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The evaporation time of dense, cylindrical clusters of drops in vortical flows
is mainly controlled by the initial solid body rotation of the drops. The
evaporation time is a strong decreasing function of the air/fuel mass ratio in
the dense cluster regime and asymptotically levels off in the dilute cluster
regime. As the drops evaporate they move out radiaily forming a cylindrical
shell around the center of the vortex. Both the final to initial volume ratio
and the final to initial shell thickness ratio are decreasing functions of the

initial air/fuel mass ratio.

It is shown that whereas the eveporation time does not correlate with the
initial Stokes number in the dense cluster regime, both the volume ratio and the
shell thickness ratio correlate very well with the initial Stokes number. In
the small Stokes number regime, the correlation is insensitive to the initial

air/fuel mass ratio.

Additionally, it is found that the evaporation time of both dense spherical
clusters of drops in axial flows, and dense cylindrical clusters of drops in
vortical flows can be substantially decreased by reducing the size of the
cluster. In both cases, substantial fuel vapor loss was seen to occur through
the boundary(ies) of the cluster. The ratio of the mass of fuel vapor lecst from
the cluster by the initial mass of the fuel increases substantially with

decreasing cluster size.
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B.  INTRODUCTION

This report describes research performed during FY’87-FY’89 at the Jet
Propulsion Laboratory on the Modeling of Drop Containing Turbulent Eddies.

C. OFJECTIVES

The objective of this effort was to develop a model of the behavior of a single
drop-containing turbulent eddy.

D.  APPROACH

The approach was characterized by a step-wise progression towards our objective
in order %o insure that the simplest model capturing the crucial aspects of the
drop-eddy interaction was developed. In this manner enough realism is embedded
into the model to qualitatively describe the physical picture, while the
simplicity makes this model a good candidate for further development in order to
develop quantitative capabilities.

E.  RESULTS

Initially, the idea was to use contour dynamics methods to describe the vortex
motion and to couple to this the particle behavior. For this reason, Caltech
was issued a subcontract to look into transport and mixing in vortical flows.
Two publications (see Appendix 1 and Appendix 2) and tnree conference
presentations, including an invited presentation, were the results of this work
[see items VII (4) and VII (5) in the Summary].

However, it turns out that preliminary work (see Appendix 3) focussing on heat
and mass transfer across the surface of a cluster embedded in a turbulent flow
showed that instead of the cluster volume evolving at a rate consistent with
evaporation such that all new vapor stays inside the cluster, there is
substantial mass transfer across the cluster surface. The situation where the
cluster volume evolution is such that all evaporated mass stays within the
cluster is amenable to a contour dynamics description because the contour lines
are streamlines, however if mass crosses the cluster boundary this description
is no longer valid. This preliminary model showed that transport across the
cluster boundary is important and that other aiternatives to the contcur
dynamics methods must be found.

Additionally, this model showed that, in absence of vortical motion inside
the cluster, a cluster of evaporating drops always contracts initially due to
heat transfer from the gas phase to the liquid phase. For dilute clusters of
drops, there is little contraction because there is not much liquid mass, and
after this initial contraction the cluster volume stays basically constant. In
contrast, for dense clusters of drops there is strong contraction and a recovery
ensues. This recovery is due to transport of surrounding hot gas to the
cluster, across its boundary. The amount of recovery increases as turbulence
levels in the surrounding gas increase and also as the initial radius of the
cluster decreases. It was also shown that the evaporation time is a strong
function of both turbulence levels and initial relative velocity between drops
and gas in the dense cluster, regime, whereas the evaporation time is not a
function of either turbulence or relative velocity in the dilute cluster regime.
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Just as important, it was found that the evaporation time is a strong decreasing
function of the initial cluster radius in the dense cluster recime and
independent of the initial cluster radius in the diliute regime. Thus,
turbulence is seen to be important in two ways: First it can break the spray
into clusters and the smaller is the cluster, ihe shorter is the evaporation
time Second it brings hot, unvitiated (by fuel) vapor from the surroundings,
thereby promoting evaporation. The present results show that evaporation
control should be envisaged near the atomizer, where the spray is dense, because
it is precisely in this regime that turbulence has the greatest effect.

Based upon the above results it was cecided that since transport processes
across the cluster boundary were so important, the model describing the radial
motion of the drops, and thus the cluster boundary motion, must be improved.
With this new, improved model compariscns were made (see Appendix 4) between
four models based upon combinations of two different turbulence models
(transport to the cluster) and two different models of drop radial motion
(transport from the cluster). The results (see Appendix 4) showeu that the
evaporation time is insensitive to the models in the dilute cluster regime; that
all models have same qualitative behavior in the dense cluster regime; and that
the quantitative predictions are different for the four models in the dense
cluster regime.

A1l models show that the evaporation time is an increasing function of the
initial cluster radius, with a strong dependence in the small cluster radius
regime, however quantitatively the evaporation time is a function of the model.
It was also found that the ratio of fuel mass lost to tne initial fuel mass is a
decreasing function of cluster radius because for smaller clusters the surface
to volume ratio is larger thus enhancing evaporation. These results were
qualitatively the same, independent of the turbulence levels, however, for
larger turbulence levels the ratio was larger. In contrast, the ratio of the
total mass lost from the cluster to the initial mass was shown to be insensitive
to the initial cluster radius, except for very small clusters. These results
show that in order to evaluate and improve models, experimentalists must make
measurements in the dense cluster regime and for small clusters, where the
sensitivity of the results is highest.

A1l the above results were obtained for clusters of drops moving axially in a
flow. Thus both drops and gas in the cluster had an axial and a radial velocity
component, the radial component accounting for cluster expansion or contraction.
The pertinent points of -the studies of drops in such spherical clusters are
described in Appendix 5.

In order to describe .ne behavior of collections of drops in large, coherent
vortices such as qaﬁs been observed in the shear layer between the spray and the
surrounding gas( »¢),  another configuration was studied. In this new
configuration, a single longitudinally infinite vortex with an infinitely thin
viscous core contains a cluster of drops. Uniformity is assumed in the
longitudinal direction and thus the model is formulated for a section across the
longitudal axis. The cluster of drops has also a cylindrical geometry with an
inner radius and an outer radius both located within the free part of the
vortex. Thus the drops form a cylindrical shell inside the vortex with the
inner surface of the shell being initially located either at a finite location
or infinitesimally close to the vortex center. In this new configuration both
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drops ind gas have radial and azimuthal velocities which are functions of time
and ihe radial coordinate from the vortex center. The drag force incorporates
blowing effects from the drop surface as the drop evaporates. The model is
described in detail in Appendix 6. Results obtained with this model show that
the evaporation time is a strong function of the initial solid body rotation of
drops and a weaker function of the initial solid body rotation of the gas in the
dense cluster regime. In the dilute cluster regime the reverse is true. The
initial irrotational drop motion and initial gas solid body rotation affect
evaporation in both dense and dilute regimes. It is also found that the ratio
of the final (when the drop residual radius is 5%) to initial vclume ratio is a
decreasing function of the initial air/fuel mass ratio bec .use for denser
clusters the centrifugal force is higher due to the larger amo .t of mass in the
cluster. The volume ratio was shown to be highest for lar eost initial solid
body rotation of the drops. The ratio of the final to initi 1 shell thickness
of the cluster was also shown to be a decreasing functiun of the initial
air/fuel mass ratio. This was explained Ly the fact that - rotational motion
tends to pack the cluster, where2: solid body rotation tends to pull the cluster
apart. Since the initial irrotational gas motion was taken higher than that of
the drops, as the drops move out radially they lose solid body rotation and
acquire irrotational motion. Since the same momentum is transferred to more
mass as the air/fuel mass ratio decreases, the irrotational drop motion will
increase less. Thus solid body rotation will be more important yielding a
thicker shell.

One of the most important results of this study was the finding that
although the evaporation time does not correlate with the initial Stokes number,
in the dense cluster regime both the volume ratio and the shell thickness ratio
do correlate with the initial Stokes number. The reasons for this are explained
in detail in Appendix &%, and thus will not be repeated here. The important
conclusion is that this correlation provides a way of qualitatively checking
this theory without necessarily needing a precise measurement of the drop number
density providing that one makes the measurements in the dense cluster regime
and that one can distinguish between two clusters which one 1is denser.

Parametric variations with the initial cluster radius show that the
evaporation time can be substantially reduced by decreasing the initial cluster
radius in the small cluster-radius regime. Details on the parametric variation
are given in Appendix 6.

REFERENCES
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AN ANALYTICAL STUDY OF TRANSPORT, MIXING AND CHAOS
IN AN UNSTEADY VORTICAL FLOW

By V. ROM-KEDAR?®*,
Appliec Mathematics

A. LEONARD
Graduate Aeronautical Laboratories

and S. WIGGINS
Applied Mechanics
California institute of Technology, Pasadena CA 91125

We examine the transport properties of a particular two dimensional, inviscid incompressible flow using dynamical
systems techniques. The velocity field is time periodic and consists of the field induced by a vortex pair plus an
oscillating strain-rate field. In the absence of the strain-rate §eld the vortex pair moves with a constani velocity
and carries with it a constant body of fluid. When the strain-rate field is added the picture changes dramauncally:
fluid is entrained and detrained frcm the neighborhood of the vortices and chaotic particle motion occurs. We
investigate the mechanism for this phenomena and study the transport and mixing of fluid in this flow. Our work
consists of both numerical and analytical studies. The analytical studies include the interpretaton of the invanant
manitolds as the underlying structure which govern the transport. For small values of strain-rate amplitude we use
Melmkov's technique to investigate the behavior of the manifolds ar the parameters of the problem change and 10
prove the existence of a horseshoe map and thus the existence of chaotic particle paths in the flow. Using the
Melmkov technique once more we develop an analytical estimate of the flux rate into and out of the vortex neigh-
borhood. We then develop a techniqué for determining the residence time distribution for fluid particles near the
vortices that is valid for arbirary strain-rate amplicudes. The technique involves an understanding of the
geometry of the tangling of the stable and vnstable mamifolds and results in a dramatic reduction in computational
effort required for the determination of the residence ume distribudons. Additonally, we invesugate the total
stretch of material elements while they are in the vicinity of the voriex pair, using this quantity as a measure of the
effect of the horseshoes on trajectories passing through this region. The numerical work venfies the analyucal
predictions regarding the structure of the invariant manifolds, the mechanisin for entrainment and detrainment, and
the flux rate,

*Present address: The James Franck Institute, The University of Chicago, Chicago I 60637




1. Introduction

In most Auid flows of interest, transport and mixing are dominated by convective processes so that
the relative motions of fluid partici=« are all important. Unfortunately particle motion is generally more
complex than the underlying fluid dynamics. For example, while the moton of three point vortices in an
unbounded domain is integrable, particle motion in this flow car: be chaotic (Aref (1983)) and certain
simple steady, spatially periodic solutions to the Euler equations in three dimensions, known as ABC
(Amold, Beltrami and Childress) flows yield chaotic particle motion (Dombre et al. (1986]).

Of course, if the fluid dynamics is sufficiently simple then particle motions are integrable and a
direct analytical amack on the problem may oz fruiful An example in this class is the analysis of a
diffusion flame by Marble [1985], involving the rolling up of a. aitially plane interface in the flow of a
viscous line vortex in two dimensions. At the cther end of the scale, when the flow is turbulent, direct
numerical integraton of the Navier-Stokes equations plus convective equations for passive scalars (Kerr
(1985], Pope [1987]) is a computational approach to mixing problems, whereas a theoretical approach
might consist of constructing reasonable physical models for mixing processes (Broadwell [1987],
Dimotakis [1987], Kerstein and Ashurst (1984]). In this paper we consider an intermediate case. one in
which the flow is re'atively simple but the particle motion is chaotic. We show that the recent rapid
development in the theory of nonlinear dynamical systems and chaotic phenomena gives much hope for
a rather extensive analysis of particle motion in such flows. Indeed, th~ dynamical systems approach to
the study of fluid flows is very similar in spirit to the flow visualization techniques utilized in the
experimental study of coherent structures in the sense that dynamical systems theory is concerned with
the global topology of the flow from a Lagrargian point of view. Since to good approximation
temperature and mass move with the fluid velocity, understanding the structures goveming particles
motion in fluid fAows is necessary for interpretations of fow visualizations (the visualization of motion
of mass particles) and predictions of mass and heat transfer in technological applications.

The application of dynamicai systems theory to the study of the global topology of fuid particle
motions is nct new. The first work appears to be that of Herlon (1966] who, acting on a suggestion of
Amold [1965), numerically studied the fluid particle motions in ABC flow. Herion showed that the
flow contained KAM tori as well as chaotic motions of the Smale horseshoe type. This flow has
recently been the subject of more extensive study by Dombre et al. (1986). Chaotic particle motions in
the ABC flows also have relevance to the kinematic dynamo problem, sec Ameid and Korkine (1983],
Galloway and Frisch [1986], and Moffat and Proctor [1985). Aref [1984) made the first explicit
connection between particle motions in two-dimensional incompressible flow and two-dimensional
Hamiltonian dynamical systems.

Since the study of fluid particle motions involves only kinematical considerations. the application,
and hence, results of dynamical systems theory are independent of Reynolds number. For example,
Aref and Balachandar [1986] showed that unsteady stokes flow between eccentric rotating cylinders. in
which the rotation rate is modulated periodically in time, can exhibit chaotic particle modons of the



Smale horseshoe type. Thus this particular stokes flow is effectively nonreversible. This same flow has
also been studied experimentally as well as theoretically by Chaiken et al. [1986], {1987]. Otino and
_oworkers (see Chien et al. [1986], Khakar et al. [1986], and Ottino et al. {1988]) studied chaonc fluid
partcle mounons in a variety of flows, toth at s'iall and large Reynolds numbers with particular
emphasis on using dynamical systems techniques as a theoretical basis for the discussion of mixing
processes. Broomhead and Ryrie [1988] study fluid particle motions in the velocity ficld of Taylor
vortces close 10 the onset of the wavy instability and demonstrate the chaotic transference of fluid
between neighbonng vortices. Feingold et al. [1988] stdy models for particle mouon in three
dimensional time dependent flows. Additonal references applying dynamical systems techniques to the
study of fluid particle trajectonies are Suresh [1985] and Arter [1983].

In this paper we study fluid particle motions in the velocity field incuced by two counter-rotanng
point vortices of equal strength subject to a time periodic strain field. This is a fundamental type of
flow which is relevant to a wide variety of applications as, for example, in the study of oscillatory flows
in wavy walled mubes (see Ralph [1986], Sobey ([1985], and Appendix !), in the study of wailing
vortices, and in the study of perturbed vortex rings (Shariff [1989]).

The main difference in our analysis of the topology of a fluid flow via dynamical systems
techniques as opposed (o previous analyses is that rather than just using the framewok of dynamical
systems theory to give a description of the topology and indicate the presence of chaotic fluid rartcle
trajectories we use the framework in order o calculate physically measurable quantties such as fluxes
and the distribution of volumes via residence times. We do this by first identifying the structures in the
flow responsibie for these physical processes and then by using the dynamirs of these structures t
predict these physical qua.dties. Thus in some sense we realize the goal of the study of coherent
structures for our problem. Additionzlly, in this paper we introduce two new concepts that play an
important role in the study of mixing and transport processes due to chaotic fluid particle motons.
They are:

1. Tangle Dynamics. In section 3 we review how the study of particle motons in two-
dimensional incompressible time-periodic luid flows can be reduced to the stdy of a two-
dimensional map. It is well known in the dynamical systems literature that such maps may
possess resonance bands consisting of alternaung hyperbolic and ellipic periodic points.
This has uid dynamical significance in the sense trat the stable and unstable manifolds of
the hyperbolic points create partial barriers w transport in the flow. Additonally, these
stable and unstable manifolds may intersect many dmes resulting in a complicated
geomeirical structure that dramatically influences the stretciing and detormation of fluid
elements. We develop analytical and computational techruques which we refer 10 as rangle
dynamics that allow us to compute the rate of transport uf fluid betweer. regions separated by
these partial barriers. From this informanon we cin compute rcsidence time distnbuuons
and, more generally, determine the effect of a resor:ance band on a fluid element We



develop these ideas in the context of the specific flow considered in this paper, however
recently the methods have been generalized to apply to any two-dimensional time-periodic
fluid flow, see Rom-Kedar and Wiggins (1989].

2. Finte Time Strerch. Otino [1988] has shown the relationship between the notion of a
Liapunov exponent from dynamical systems theorv and the stretching of fluid elements.
However, the Liapunov exponent is 2 quantity computed for a single fluid particle ‘rajectory
which is time averaged in an asympwtic sense. Thus there is a practical limitation of this
quantity in that, for many open flows, most fluid particles spend only a finite¢ rime in the
chaotic zone rendering the classical thr.ory of Liapunov exponents inappropriate. This is so
because the asymptodc time average for such trajectories would give a zero exponent
However, using tangie dynamics and proof of the existence of chaotic paricle motions, we
are able to determine which particles si:c'dd experience exponential stretching and the finite
tme interval over which most of this siretching will take place. We then quantify the
stretching by considering the total stretch suffered during this finite pericu of dme.

This paper is organized as follows: In section 2 we derive the velocity field for the oscillating
vortex pair and in secticn 3 we begin our analysis of the velocity field by inroducing the Poincare map.
In section 4 we discuss three qualitatively distinct regions which arise in our flow: the free flow region,
the core, and the mixing region. We discuss tangle dynamics and the associated mechanism for mass
transport in the flow in section 5 and we consider mass transport in detail and give precise defnitions to
the concepts of entrainment and detrainment in terms of tangle dynamics in section 6, along with the
results of numerical computations. In section 7 we discuss the concept of chaos and show how it arises
in our flow, and in section 8 we discuss mixing and the total stetch of fluid elements as they pass
through regions containing localized chacs. Summary and conc.usions are given in section 9.

2. Oscillating Vortex Pair

We examine the flow governed by a vorex pair in the presence of an oscillating external strain-rate
field. The vortices have circulations + I" and are separated by a nominal distance 2d in Xe y-direction.
The stream function for the flow in a frame moving with the average velocity of the vortices is

r x-P+@ -n)? :
Ya-l [(x-xy)%(y +yv)2} Ty e s .

where ( x, (), £ y,(t)) are the vortex positions, € is the strain rate and V, is the average velocity of the

vortex pair. If ¢ =0 then (x,,y,)=(0,d)and V, = -{E . The equations of particle mction are

hd

— N mm—— Q:-— (‘,2\

dt - dy d ox o
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We show, as an example, in Appendix | that this flow approximates the flow induced by a vortex pair
in a wavy-wail channel. We obtain dimensionless variables as follows:

/ It € 2rdv, r 2V
xid =x,y/ld >y, Mz-»t,?n——be, T - v,, znwz—»y, T - ¥
Then (2.1) and (2.2) become

x| 0-n) yrn e ,
== - - - -V, + — sin(¢/ 2.32
dt L(X -xv).+(y "yv)z (X -Xv)""()’ +yv)2J Y ¥
dy 1 1
D oox-x)! - - & sinary (2.3b)
dt | G-x)+0=-0n? G-l +0+n)?] ¥ !

Using the fact that a point vortex i3 convected with the flow but does not induce self velocity we obtain
the following equations for the voriex position locations:

el v+ = sinem 24
d: ZYv v Y 1Y, 2.43)
dy, &y
— R e — i
pr ” sin(¢/y) (2.4b

The resulting motion of the vortices is relatively simple. Equaton (2.4) with the wmital conaiuo.o
x,(0) =0, y,(0) = 1, are easily integrated to give

{
x, (1) = g-e"““"’”") f [1 - ZU,e‘(“"(’)")} ds (2.5a)
0

¥y () = eE(estm=b (2.5b)

The requirement that the mean velocity of the vortex pair be zero in the moving frame yields
4

v, = -7:1%' where /, is the modified Bessel functon of order zero. From (2.5) it is clear that the
0

vortices oscillate in orbits near the points (0, £ 1). Thus we term the resulting flow given by (2.3) the

Oscillating Vortex Pair (OVP) flow.

Equations (2.3) together with (2.5) give the equations of particle motion as a functon of two
dimensionless parameters y and €, proportional to vortex strength and strain rate, respectively. For most
of the analysis that follows € can take on arbitrary values. However for the perturbation calculauons we
shall assume that ¢ is small and will require an expansion of the right hand side of (2.3) in powers of €.
This expansion yields equaticns of motion for fluid particles which are of the form of a periodically
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perturbed integrable Hamiltonian system:

%=f1(1')')+€81(x-)"UY-Y)"'O(S") (2.6a)
% =fyx.y)+egax.y. tih Y+ O (2.6b)

ihe functons f,, g; are given in Appendix 2.

For € = O the phase portrait of the integrable Hamiltonian system, or equivalently the streamlines of
the flow induced by a vortex pair in the frame moving with the vortices, appears in figurc 2.1. Note
that for this case, there are two hyperbolic stagnation points p_, p, connected by three limiting
streamlines ‘¥,,¥oand ¥, defined by ¥ (z.y)| mo=0. | x| SV3, with y >0,y =0, and y <0
respectively. Thus a fixed, closed volume of fluid or "bubble” is bounded by the limiting streamlines
and moves with the vortex pair for all imes. As we shall see below, this picture changes dramatically
when € =0. Note also that for any g, the flow is symmetric about the x axis and thus we need only
study the flow in the upper half piane. Such symmetry would be present in axisymmetric flows. If the
strain-rate field is not aligned with the x —y axes the straight line connecting the two vortices also
rotates periodically, but the qualitative behavior of the particle motion is the some as that discussed in
the following.

Figure 2.1 Streamlines of the Unperturbed Flow.

3. Analysis: The Poincare Map

We are interested in the structure of the flow generated by the velocity field (2.3) and how the
structure varies as the parameters ¥ and e are varied. A brute force method for achieving this goal
would be 10 numerically integrate (2.3) for a large number of initial conditions for the range of yand ¢
values of intzrest. Although this would be an efficient means for generating a large list of numbers, it is
not at all ciear how one would extract information conceming the structure os the flow from this list of
numbers. One migin oy plotting the trajectories of a large number of fluid particles in space, however,
because the velocity feld is unsteady, these trajectories may intersect themselves as well as others many
umes Isading to a complicated topological structure which might obscure relatively simple structures
whose dynamics essentially govern the flow. In order to better understand the dynamics of the unsteady
flow generated by (2.3) we will study the associated Poincare’'map.

Roughly speaking, the Poincaré map of the flow is constructed by associating to a fluid particle at a
fixed phase of the extemal strain-rate field its location under evoluton by the flow after one period of
the strain-rate field. More mathematically, we rewrite the unsteady two dimensional velocity field (2.3)
as < steady three dimensional velocity field by introducing the phase of the strain-rate field as a new
dependent variable. We do this by defining the function
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0(e) = t/y mod 2%

in which case (2.3) and (2.5) can be written as:

-~

x = % (x.y .8:.9)

y=- aa—‘f (x.y 8:e.5) 3.1

8= l.

and for small € (2.6) becomes:

x=f,(xy)+eg, (x,y.8:y) + O
y=faxy)+egax.y. 0 1)+ OE) (3.2)
8=14.

A two dimensional cross-section of the three dimensional phase space of (3.1) or (3.2) is given by:

_f _
Z°=t x.y.0)|86=0¢€¢ (0.2::1}

and the Poincar¢ map of 25 into 26 is defined as:

Tg: -2
(x(8), y(®) = (x(8 + 2m), y (8 + 2m)).

So studying the flow via the Poincaré map is equivalent to sampling fluid particle trajectories at ime
intervals equal to the period of the strain-rate field.

The main »4vantage obtained from using the Poincaré map t0 study unsteady, ime-periodic velocity
fields is that the technique tends to filter out redundant dynamical phenomena and reveal the underlying
structures which govem various properties of the flow such as mixing and transport. For example, a
periodic particle trajectory in the flow which may have a very complicated topological structure is
manifested as a finite, discrete set of points for the Poincaré map. Many more examples will follow
throughout the rest of the paper. Also, in Appendix S we collect several useful properties of Poincare

maps.
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Our goal is to study properties of the orbit structure of the Poincaré map in urder to discover the
structures necessary to predict mixing and transport properties of the flow.

4. Three Qualitat: ely Distinct Flow Regions

Let us recall the structure of the unperturbed velocity field now in the context of the Poincaré map.
In this case the velocity field is steady and fluid particles follow the streamlines defined by the level
curves of the stream function. Thus orbits of the Poincaré map are sequences of discrete points lying on
the streamlines. The streamlines are examples of invarians curves or manifolds of the Poincaré map
meaning that particles which start on such a curve must thereafter remain on that curve under all
iterations of the Poincaré map. The stagnadon points p. and p., are fixed points of the Poincaré map.
Orbits of uuid particles on ‘¥,, and ‘¥, approach p, asymptotically in positive time and p._
asymptotically in negative time. In the terminology of dynamical systems theory, ¥, and ¥, are
referred to as the stable manifold of p,, denoted W, and ‘¥, plus ( —ee , p,) is the unstable manifold of
p+ denoted W¥. Similarly, ¥, and ‘¥, are referred to as the v.istable manifold of p_, denoted W*, and
WYo plus ( p-,oe) is the stable manifold of p., denoted W2. Orbits of fluid particles starting on ¥,
Yo, and ¥, are referred o as heteroclinic orbits and ¥, U Woulp.) U (p-} and
¥, Yo IP+ U (p-} are said to form heteroclinic cycles. For brevity we shall simply refer'to the
closed curve ‘¥, (U ¥ U (P4} \U (p-} as the limiting streamlines.

Notice that fluid particle motions outside the region bounded by the limiting streamlines are
qualitatively different than those inside this region. We now want to discuss more fully the different
possible fluid particle motions and how they are constrained by structures in the flow.

The Free Flow Region. Under the influence of the unperturbed velocity field fluid particles outside the
region bounded by the limiting streamlines move from right to left along the unbounded streamlines.
We refer to this as the free flow region. Under the influence of the extemally strained velocity field
fluid particles which are sufficiently far from the limiting streamlines behave in the same manner as
those in the unperturbed velocity field. Particles move from nght to left as before now with vertical
oscillations but their trajectories never encircle a vortex.

The Core. We refer t) the region of fluid which is permanently trapped and hence moves with the
vortex pair for all time as the core. For the unperturbed flow the core is the fluid within the limiting
streamlines and it contains two separate cells with boundaries C, =¥, U Yo U (P} U {p-} and
Cir=¥, U Yo (p+) \ (p-). Fluid particles in the interior of C, and C; move in closed paths
along the streamlines of the unperturbed velocity field. We can uniquely label each closed streamline in
C. and C; by the area which it encloses. We label this area by I (note: in the context of Hamiltonian
mechanics I is called the action, see Amold {1978]). Associated with each closed streamline is a period




T which is the ime needed for a particle starting on the streamline to make one complete circuit
along the streamline. The period goes to zero as the point vortices are approached and to > as C, and
C, are approached.

We now interpret this exmemely simple motion of fluid particles in the unperturbed case wnside C,
and C; in terms of orbits of the Poincar€ map. The streamlines in ¢his case are examples of :nvariant
curves of the Poincar¢ map. That 1s, orbits of fluid particles which start on the streamlines must always

stay on the streamlines. There are two types of orbits depending on whether or not the number T;( ) is

T{)

2ry
as a rotanon number ). These two types of orbits behave very differently under the influence of the time
penodic strain-rate field.

raponal or irrational (note: in the context of dynamical systems theory the number

is referred to

T)2ry=p/q:p.q, integers. [n this case, every fluid particle on the invariant circle in the Poincare
map in the unperturbed case retums to its original position after ¢ cycles ~f the Poincaré map.
However, in the process it makes p complete revolutions around the invarant circle. Thus all fluid
particles on the invariant circle move periodically with period q.

In general, this situation can be expected to change dramatically under the infuence of the ume
periodic strain-rate field. The invariant circle is destroyed and a finite even number of periodic orbits of
altenating stability type will be preserved in the externally strained case. Haif of the periodic orbits
will be stable and half will be unstable of saddle type. The stable and unstable manifolds of the saddle
type motions may intersect transversely, yielding chaotic fluid particle motions. The resulting structure
is known as a p/q resonance band or stochastic layer, see Amold and Avez [1968] for more details.

T()2ry=@: © irrational . In the unperturbed velocity field every fluid particle starting on an
inveniant circle of the Poincar€ map rotates around the circle, never retuming to its initial positon.
Two possibilities for the behavior of these orbits under external strain are as follows:

KAM rori. If o is sufficiently poorly approximated by rational numbers, i.e. it satisfies a diophantine
condition (see Amold and Avez [1968] or Moser (1973)), then, for sufficiently small amplitude strain-
rates &, the invariant circle is preserved in the perturbed Poincar¢ map. This invariant circle is referred
to as a KAM rorus after Kolmogorov, Amold, and Moser who first proved the resuit (known as the
KAM theorem). KAM tori are extremely important since they represent total barriers to {luid motion
and hence strongly influence transport.

Cantori. If o fails to satisfy the number theoretic hypotheses of the KAM theorem th=n the work of
Percival (1980], Aubry and LeDaeron {1983}, and Mather [1984] implies that the invanant circle may
break down under the time periodic strain-rate field into an invariant cantor se. or cantorus. The
dynamics on the cantorus are similar to the dynmamics on the KAM torus. However, the cantorus
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contains gaps which permit the (possibly very slow) passage of fluid.

We refer the reader to figure 4.1 for an illustration of resonance bands, KAM tori, and cantori in = .2
core. Our primary concem is with particle motion in the mixing region defined below. Thus we only
remark that these three structures govern the fluid transport within the core. In the parameter range we
are studying there cxists the largest KAM toms which serves as a complete barrier to the flow, and
therefore will prevent the mixing of outer fluid with the fluid in the core. An interesting question is
whether the core region is composed of a single region bounded by a KAM torus or if there are islands
outside the largest KAM torus in which the motion is bounded. During the numerical experiments,
described 1n Section 6, we observed that for y= 0.5 there is only one observable core region while for
y= 1.38 there are at least two (see figure 6.10).

Figure 4.1. Resonance Bands and KAM Ton.

The Mixing Region. We now want to focus our attention on p, and p_ and their stable and unstable
manifolds. In the unperturbed flow W3 and W coincide along the streamlines ¥, and ¥, to create a
boundary separating the core from the free flow region. With the addition of extermal strain we can
make the following assertions:

1. For sufficiently small amplitude strain fields (i.e. for e sufficiently small) p, and p_ persist as
fixed poimus of the Poincar¢ map. We shall denote them by p., and p_, respectively.

2. The stable and unstable manifolds of p, and p. persist t0 become the stable and unstable
manifolds of p.., and p_,. We denote them by Wi, K Wi,, Wi,, and W¥,, respectively.

These two results follow from general theorems regarding the persistence of invariant manifolds which
can be found in Fenichel (1971] or Hirsch, Pugh, and Shub [1977] and they are independent of the
specific analytical form of the time periodic strzin-rate field (note: these results would also apply to
quasiperiodic strain rates, See Wiggins [1987], [1988]).

We will see in section 6 that for arbitrary €, (1) persistence of invariant manifolds for arbitrary
values may be decided by computation, (2) particle transport is governed by the invariant manifolds,
and (3) that the unstable manifold is the observable structure in a broad class of flow visualizations.

From our discussion of the symmetry of the velocity field in section 3, it follows that y = 0 is
always an invariant manifold for both the perturbed and unperturbed velocity field. This implies that
Yo=Wi VW =W{, UW., persists as an invariant streamline. However, the interpretation of
Wi, and W, is more subtle since they need not coincide as in the unperturbed case. Now W, and
W<, are smooth invariant curves and a fluid particle path starting on these curves in the contnucus
time flow is represented as an infinite set of discrete points on these curves in the Poincar€ section. As
such it is possible for W, and W1, to intersect in an isolated point as shown in figure 4.2. Note that
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figure 4.2 could not hold in the unperturbed case because, for steady flows, particle paths must coincide
wth streamlines and streamlines cannot intersect in isolated points without violating uniqueness of
scluuons of ordinary differential equadons. If we consider the orbit of this point of intersection under
the Poincaré map, then by invarizice of WX, and W, it must forever remain on both W, and Wi,
resulting in a geometrical shape similar to that shown in figure 4.2. This splitting of the stable manifold
of p. and the unstable manifold of p . res.lts in a mechanism for the transference of fluid berween the
vicinity of the core and the vicinity of the free flow region. It also provides the mechanism for chaotic
narucle mouon. For this reason, we refer to region bounded roughly by the envelopes of W, and
Wr'ie as the mixing regwn. A precise definition of the mixing region is given in section 6. The mixing
region of course, does not exist for the unperturbed case. One characterization that distinguishes the
free flow region, the mixing region, and th.z core is that they consist of particle trajectories that encircle
3 vortex zero, a finite, and an infinite number of times, respectively.

Figure 4.2. The Homoclinic Tangle in the Mixing Region.

The Melnikov Technique

An analytical technique which allows us o predict the behavior of W1, and W, for small € was
developed by Melnikov [1963] and consists of 2 measurement of the distance between W1, and W, .
Up to a known normalization factor, the first order t2rm of the Taylor series expansion about £ =0 of
the distance between W, and W%, can be computed without solving (2.3) explicitly. This first order
termu is known as the Melnikov function. In Appendix 3, we discuss the geometry of the Melmkov
function as well as some of the relevant technical points behind its derivation. In this section, we state
the results of the calculations for our ptoblem.

The distance between W1, and WY, is given by

M(tg)

__ Mt e .
T =t 0@ @D

d(tg, €) =€

where g,(¢) is a heteroclinic fluid particle trajectory of the unperturbed velocity field lying in ¥, ¢
parametrizes distance along ‘¥, , and

1| £ (qu(=to)) 1|2 VU 1(qu (= t0))* + (f 2(qu (= t)))*.

Thre Melnikov function M (tq) is defined to be

M(tg) = f [f g ()8 2(qu(8)s t +20) = f 2(qu(1))g1(qu (), t + fo)] dr. 4.2

— "

and Melnikov's theorem (see Appendix 3) shows us that simple zeros of M(tg) ( i.e. M(ty) =0.
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3_1:: = () imply simple zeros of d (¢o. €) for & sufficiently small. We remark that d (¢4, €) may be either

positive or negative as it is actually the signed distance between W1, and W*,. In Appendix 3, we
show that the sign of d(to, €) gives us information conceming the relative oriemtation of W1, and W¥,.
Also note that || f (qu (- tg)) || = O exponentially fast as ¢q — + o which implies that | d(tq, €) | = e as
tg = toe. This just reflects the fact that Wi, and WZ, oscillate unboundedly near p_, and p..,
respectively.

We numerically calculate the Melnikov functivn for the velocity field (2.3) and obtain

Mty = —F—;I)- sin (¢¢/Y) 4.3)

where F( v ) is plotted in figure 4.3. Note that for fixed Y, M (¢ has an infinite number of isolated

zeros at which STM 2 0. As discussed in Appendix 3, these comrespond to transverse intersections of
0

Wi, and W2, and therefore we obtain a direct analytical confirmation of figure 4.2. Aty = 1.78, F(y)
changes sign, which corresponds to a change in the crientation of the intersection of W{, and W!,.
For y= 1.78, M (to) = O implying that d(¢o, &) = ((¢). In figure 4.4 we present the manifolds computed
numerically for several values of ¥ confirming the change of orientation of the intersection.

Figure 4.3 Graph of F(¥).

Figure 4.4 Numerical Conputations of the Invariant Manifolds for Various Parameter Values.

§. Tangle Dynamics

We now describe the dynamics’associawd with the tangling of the stable and unstable manifolds of
p., and p_, . Specifically, we will describe the essential dynamical mechanisms for fluid transport
within the mixing region. We will see that the properties of invariance of the stable and unstable
manifolds as well as the orientation preserving property of the Poincaré map render a temporal
simplicity o the geometrically complex structure associated with the tangling of the manifolds. This
allows us to obtain a quantitative hold on the dynamics in the mixing region. In much of what follows
there will be no restriction on the amplitude of & .

Lobe Motion. We begin with two definiticns:
Definition 5.1. Consider a point ¢ € W%, N W¥, and let p,, ¢ denote the segment of W1, fromp. .

to ¢ and let p_, q denote the segment of W, from p_, t0 ¢. Then q is called a primary intersecnon
point (pip) if p,,q and p_, q intersectonly inq,i.e.p.eg Np-.q =(q). See figure 5.1.
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Definition 52. Let ¢, and ¢, be two adjacent pip, i.c. there are no pip on the segments of W%, and
W2, which comnect ¢, and ¢q,. We refer 1o the region bounded by the segments of W, and W*,
which conpect ¢ and ¢, 1s a lobe. See figure 5.1.

The spatial structure of the manifolds provides a natural ordering by time which is useful when we
discuss the flux as well as entrainment and detrainment. To describe this ordering we need the
following definitions:

Definition 5.3.. Let ¢, and ¢, be pip's. Then we say that ¢ < g, if g is closer than ¢, 1o p_, In
terms of distance along W&,.

Definition S.4.. Suppose that L, and L, are lobes. Then we say that L, < L, if each of the pip’s
defining L, are less than or equal to each of the pip’s defining L.

Figure 5.1. ¢1, 92, 93, qs are pip’s, gsisnot apip. L, L, Ly arelobes with L < L; < Lj.

Now let ¢ be a particular pip and consider the region bounded by p.,q Up_,q U (Wi, " WI,]
We refer to this as region A. We will describe the motion of fluid across the boundary of A. There 15
no restriction on the choice of ¢ . In figure 5.2 we choose ¢ rather arbitrarily for illustrative purposes.
Later we choose ¢ so that A corresponds as much as possible to the unperturbed core. See figure 5.5.

Figure 5.2. The E; and D; for F (¥)>0.

Definition $.5. A lobe is called an exterior lobe if no part of its interior is contained in A. A lobe that
is not an exterior lobe is called an interior lobe.

Now consider figure 5.2. The lobes E; are exterior lobes for i S0 and interior lobgs for { > 0.
Similarly, the lobes D; are exterior lobes for i > O and interior lobes for i £0. The following is our
main result conceming the dynamics of the lobes.

Suppose that the lobes are defined so that for somen 2 1:

L. T(El) = Ea‘-m
2. T(Di) =Disa

For small €, r is just one-half the number of simple zeroes of the Melnikov function in one cycle,
T=21y. (uce Appendix 4.) For arbitrary € we construct Wi, and W%, numerically and simply track
the progression of a pip during one cycle to determine n.
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The concise observation above belies its many underlying implications:

1. After one cycle of the time periodic swrain-rate field (i.e. one iterate of the Poincaré map)
Eog....,E_,. enter region A. Similarly, afterone cycle D_;.,..., D., leave region A,

2. The lobes E;, D; maintain their ordering throughout their evolution in time under the action of
the Poincar€ map, i.c.

E; < E, implies T*(E;) < TX(E))
D, < D, implies T*(D;) < T*(D,)
E; < D; implies T*(E;) < T*(D,)

for all k. This is a consequence of the fact that the Poincaré map preserves orientation and therefore the
relative ordering of points along W, is preserved.

Lobe Area. Knowledge of the total area of the n lobes, Eg, . . ., E_ o1 . would tell us the amount of
fluid entering A per cycle. We show that the Melnikov function gives this information for small € .

Consider figure 5.3 and the lobe L defined by the pip’s ¢ and ¢3. Let us denote the infinitesimal
element of arclength along W, by ds and let /(s) denote the perpendicular distance between W<, and
W¥,. Then the area of L, denoted w(L), is given by

q3
w(L)= | 1(s)ds. 5.1

) @

figure 5.3 Geometry of the Arez of the Lobes.

Now Wi, and W%, can be approximated uniformly on semi-infinite time intervals (see
Guckenheimer and Holmes [1983] ) and because these manifolds move only an O (¢) amount from the
unperturbed manifolds on these time intervals the angle between the line along which d(to €) is
measured (see Appendix 3) and the line along which /(s ) is measured is O (€). Thus we can write

I(s)=|d(tg, &) |+ O (&) (5.2)

e(M(o|

= e 4 () (€% 5.3)
T =ty "~ 2€ (
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ds = 71% dto= 17 @u(= 100l +0(@)] dro

Substituting (5.2) and (5.3) into (5.1) gives

o EIM@o)| 2 .
“(L)’,{Lllf(m-ra»li +0@| [ IIf @t toil+ 0] dro (s.4)

=¢ [ |M(to)|dto + O ()

ta

where g, (—to) =q; and ¢,(-tg) =¢;. Thus we see that the integral of the Melnikov function

between two adjacent pip’s gives an O (€) approximation to the area of the lobe defined by the pip's.
Several comments are now in order.

1. The validity of (5.4) relies heavily on the validity of the approximation of the perturbed manifolds
via regular perturbation theory which is rigorous oniy on semi-infinite ime intervals. Thus (5.4)
is only valid for lobes defined by pip’s which are outside of sufficiently small neighborhoods of
p.e and p_,. However, in our case, the Poincaré map preserves area, so knowing the area of
one lobe implies that we know the area of all the images of that lobe under the Poincar¢ map.

2. For our problem, substituting (4.3) into (5.4) gives the following expression for the area of the n
lobes

RL)=26|FY)|+0E>. (5.5)

This gives us the explicit dépendence of the area of the lobes on the parameter y. A companson
between the numerical calculation of lobe area and the analytical result (5.5) gives good
agreement as seen in figure 5.4.

Figure 5.4 Comparison Between Theoretical and Numerical Calculations of Lobe Areas.

Now let us return to our specific problem. We choose the region A to be defined by the pip which
lies on the y axis. As mentioned above, this is so that the resulting shape of the region is very similar to
the region of trapped fluid in the unperturbed velocity field, see figure 5.5.

Figure 5.5. The Geometry of Region A.

From (4.3), M(to) = (F(Y)/ ) sin ty/y and, therefore, for small € , one lobe enters and one lobe
leaves the region A during each cycle with the area of the lobes equal to 2e!F(V)|+ O(e?). Notce




21

from figure 5.4 thr  .ry=0.93, F(y) obtains its maximum, thus the volume of fluid entrained per cycle
is maximal at this Y. The volume entrained per unit tme is maximum at y= 0.7 when F( y)/ v is
maximum. For y=1.78 the Melnikov function vanishes identically. Hence tie O (e?) terms in the
formula for the distance between the manifolds become important. For example, for € = 0.1 , we see in
figure 4.4c thar the mamfolds are nearly tangent for y =1.38 rather than for 1.78. Numerically, we
observe also that near the y for which the Melnikov function vanishes two lobes enter and ieave the
region A per cycle. (See figure 4.4¢c, d, ¢.)

Finally we note that the observed behavior of F(y) as Y increases from zero, i.e. rising to a
maximum and then decreasing through zero to negative values, may be explained as follows. The
horizontzl oscillatons of the vortex pair have amplitude O (e y) while the vertical oscillations have
amplitude O (e) independent of Y . Thus for small y the predominantly vertical oscillations of the
vortices and the phase of the oscillations are such that a particle positioned near the top of the
unperturbed core 3 quarter of the way through a cycle is "pulled” into region A. As a result lobe £,
progresses to lobe £, as shown in figures 5.2 and 4.4a On the other hand, for large v, the
predominantly horizontal oscillations of the vortices and their phase conspire 0 “push” similarly
positioned particles away from A as in figure 4.4f. At y=1.38 ( and e = 0.1 ) these opposing effects
cancel to first order as seen in figure 4.4c.

6. Particle Transport

In this section we discuss particle ransport - the flow into and out of region A. The time spent in A
depends on the particle's initial conditions and we define this time as the residence tme. A volume of
fluid therefore has an associated residence time distribusion.

The notion of a residence time distribution is an important concept in mixing systems. For
example, if fluid is injected into a catalytic reactor, the amount of product will be primarily influenced
by the time spent by the fuid in the reactor. Other processes such as chemical reaction and heat or
mass transfer have similar dependencies on the residence time distribution. Danckwens (1953]
discussed the importance and the application of this notion for steady flows through vessels (such as a
pipe or tank) and the work presented here is similar to his in spirit. Both works rely on the simple
observation that in order to determine the residence time distribution of the fluid initially in the vessel
or in A, oie needs to know the future of entering fluid only. Though developed separately, the method
described here can be thought of as a discretizaton of Danckwert’'s work to maps, where again the
advantage of working with the Poincaré map instead of the time dependent flow is apparent

We refer to the motion of fuid into A as emrainmens and the motion of fluid out of A as
detrainmens. For our problem the Melnikov function ha, 2 simple zeros per period and therefore (at
least for sufficiently small ) one lobe is entrained and one lobe is detrained per cycle. We denote these
lobes by E and D, respectively, see figure 6.1. This implies that the volume of fluid entrained into
region A during each cycle is the area of lobe E or u (E). Also, (e amount detrained from region A
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during each cycle is the area of lobe D or i (D) and by incompresstbility it raust be equal to 4 (£) and,
in general,

WT'D)=pn(T*E) (6.1)
forall 1, k=0,21,£2.

In this section we discuss more detailed questiors of parucle transport which can be answered by
applying the following rules:

R1. Fluid entering region A on cycle k must be in E on cycle k-1.
R2. Fluid 'eaving region A on cycle £ must be in D on cycle k-1.
R3. TY(E) cannot intersect T*(E) and T'(D) cannot intersect T*(D) for any &, /=0, £1, £2, - - -
Regarding R3, we note that it is possible for T (E) to intersect T*(D) for some intsgers | and k.

The questions w.: wish to address are:

1. How long does it take fluid to escape A given that it started in A?

Remarkably, it will um out that answering this question is equivalent to answerirg the follo: .,
question:

2. How long does it take fluid .0 escape from A given that it is in lobe E initially?

More specifically we wish to determine the residence time distributions for the two initial conditions
mennoned above. The answer to question | may be obtained by brute force calculations, where a large
number of i:itial conditions in A are integrated and the number escaping each cycle are counted. The
results of such calculations for two y values are presented in figure 6.10a,b. The similanty to the
marufolds shape as seen in figure 4.2 and demonstrated in figure 6.10c is not acc'denual, it is a
manifestation of the lobe dynamics as described in section §. Usirg the lobe dynamics enables us to
reduce the probiem to the computation of the residence time distribution for lobe E only.

Escape Raies
We consider first fluid that is in lobe E initially (at cycle 0). As discussed previcusiy, after one cycle

the fluid in E enters A. However, at some later tme, say cycle k-1, a portion of the original fluid may
be found in lobe D and therefore will escape A on the next cycle. We define ¢, to be that poiton, i.c..




ex = volume of fluid in lobe E at cycle O that escapes A on the k™ cycle.

Clearly,

a=pT*"'END) k=l,2,... (6.2a)

and

&y = 0 k<0 (6.2b)
Note that the corresponding distribution of escape tumes is given by e,/u(E). Using incompressibility
(6.2a) can alternately be written

e =WE NT*D)y  k=12.. (6.3)
Figure 6.1 illustrates the geometry associated with (6.2a) and (6.3)
Figure 6.1 a) ¢3=p(T2%E A D) b)es=wE NT"D)

Note that replacing E with T E in (6.2a) and (6.3) gives the volume of fluid in lobe T~ E at cycle 0
that escapes A on the k™ cycle. This is clearly equal 0 ¢,,. In fact, the ¢,’s contain information
concerning all possible intersections of any £; lobe with any D, because

aspT*EAT"D) m=a0,t1,%2,. ..

In figure 6.2 we illustrate the case m = - k +1 by displaying the sets E A T~ **!D for several vaiues
of k and y= 0.5, 0.9.

»

Figure 6.2. Geometry of E ~ T™* *!D for Various Values of k. a) y=0.5. b) y=0.9.

Now we cuasider the escape distribution for region A and define escape volumes as follows:

ay = volume of fluid in region A on cycle O that escapes on cycle k.

From previous discussions it follows that fluid leaving A on the k** cycle must be in the lobe T~**'D
at cycle 0. However not all of T™**!D was in A at cycle 0 since portions of T™**'D may intersect
T7E,0< [ <k, and should not be counted. So it follows that

k
a =Wy (TD)- 3 WT*'D A T7E). (6.4)
(w0

where the sum in (6.4) represents the volume of T**'D that is also in some T~ E for 0 S/ sk. By



incompressibility we have

WI**D) = (D) = wE) (6.5)

and from (6.3) we have

sy =WT*'D ATTE) (6.6)
Using (6.6) and (6.5) allows us to simplify (6.4) as follows

k
A =WE)- Y e
(=0

or

k
a=pE-Y ¢ (6.8)
1=l

Thus, to compute a,, we need only information conceming the dynamics of lobe E, namely the e,.
We find ¢, numerically by computing the escape cycle for each member of a regular array of gnd
points in lobe E. To verify the reladon between the ¢, and the g, given by (6.8), we have also
computed the g, for one particular choice of the parameters € and Y by a "brute force" calculation using
an array of grid points in region A. The results are shown in figure 6.3 and confirm (6.8).

Figure 6.3 Comparisen of the Brute Force Calculation and the Reduced Calculation for y=0.5.

We note that with little effort we can obtain cther quantities which are of physical interest in terms
of the e, such as:

ry = volume of flutd initially irn A thar remains in A after k cycles.

clearly,
Py B Py =~ Gy 6.9)
or

k
r=2p(A) -3 g (6.10)

Tl

Using (6.8) we obtain:



k
=R A) =KL (E)+ 3 (k=i + e 6.11)

1=l

k
Since e; and r; are firute and positive and 3 ¢; S i (E), we deduce that

(=]

-]

T U=De=ulA)-pn(C) (6.13)

=]

where ro = (C) S (A) and p (C) is the volume of fluid initially in A that never escapes, i.c. the
volume of the core oi A. The reladon (6.12) is also evident frcm incompressibility. We note also the
inversion formula

Cy BN —- ka-l + 2 (614)

The Mixing Region

We are now in a position whsre we can precisely define the mixing region. By definition, fluid
particles not in either the free flow region or the core must have trajectories on the Poincar¢€ map that
enter and leave the region A. Now in order to enter A the fluid particle trajectory must bLe in
T™E,k=0,12... In order o leave A the fluid particle trajectory must also be in T7*D, k=0,1.2.....
From (6.12) the lobe E (and, hence, by invariance, all iteraws of E) is completely filled with pieces of
T*D , for all k. Hence the mixing region is given by

v Dy . (6.15)

&k m—es -

The significance of this definition is that it allows us to characterize the region of extremely complex
fluid motion in terms of the motion of a fluid line element of finite length (i.e. the boundary of the lobes
E and D). We note also that (6.15) gives us an additional characterization of the mixing region. Namely,
fluid particle trajectories in the mixing region must make ar /east one revolution around a vorrex.

The Unstable Manifold as an Attractor

In geieral one would like to know the residence time distribution associated with any initial shape B
of finite area. This seems at the moment too difficult a question. Qualitatively one expects to have
similar behavior as obtained for A. Specifically, for any initial siiape B which can be negarded as
distortion of A (i.e. B includes non-trivial parts of the mixing region, namely it is not contained in one
D lobe), the dominant structure which will be visualized and which will control the transport is W, .
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This is a result of the motion of iobes which accumulate on W*, as ¢ — os, and the assumption that B
has fimee area. For example, consider the case in which B overlaps A on the upstream side. For large
enough «°, T E contans a very small portion of B for all ¥ > k*, which implies that for k > k*,
T*B will have a very narrow layer upstream of W, see figure 6.4. The above arguments apply to a
broad class of Jows having similar structure, namely hyperbolic stagnation points with cyclic moton
near them, implying that the unstable marufold is the observed structure in many flow visualizatons,
depending on how the fluid is marked.

Figure 6.4 The Mouon of a General Initial Shape B, a) t=0 b) r=2%yc) t=4ny.

A remarkable demonstration of the role of the unstable manifold as an amracting set is obtained by
comparing the computanons of the unstable manifolds for particle moton in the presence of two
idealized, leapfrogging vortex rings (Shanff et al. [1988), Shariff [1989]) with flow visualizaton
experiments of two vorex rings by Yamada and Matsui [1978]. These comparisons have been
reproduced in Aref and Kambe (1988, figure 8] and the reader is referred to them. In the idealized flow,
the modon of the vortex rings and, therefore, the velocity field is periodic in ume in a frame moving
with the average speed of the rings. Ring motion is computed according to Dyson’s {1893] model and
consists of (1) an axial self-induced component that is proportional to (1/R (¢) log (R (t)/8(¢)), where R
is the the ring radius and § is the core radius (R §*=const) plus (2) the velocity contributon of the other
ring. In the experiment, a smoke wire was stretched across the diameter of the pipe. Hence tracer 1s
injected not only into the separating boundary layer which rolls-up to form the vortical cores, but also
into the irrotational or weakly vortical fluid surrounding the cores. The smoke begins to reveal even the
fine scale fearures of the manifold.

As another exaaple, consider tmns‘bon in the vicinity of a single unsteady vortex ring. In the case
of an ideal, steady axisymmetric ring, limiting streamsurfaces separate the fluid near the vortical core
that moves with the ring from fluid in the free flow region and there is no exchange between the two
regions. In most cases of interest,"where the toroidal radius of the vortical core is not small compared
to the ring radius, front and rear stagnation points will exist on the axis. For a turbulent vorntex ring, the
velocity field is three-dimensional and unsteady corresponding, of course, to the three-dimensional
modons of the vorticity field. Thus, three-dimensional lobelike structures continually pierce the ideal
streamsurface from both sides and become severely distorted as they encounter the rear stagnation point
of the ideal flow. These structures are revealed in the studies of Glezer and Coles [19871 (see figure 6.4)
where it is seen that marked fluid that is injected into the ring during formation is deposited into the
wake in the form of three-dimensional Iobes. Finally, in the case of ideal, unsteady axisymmetric vortex
nngs, Shariff {1989] has demonstrated comput2tionally the presence of lobe structures in the Poincaré
map for the flow in which the time-period perturbations are caused by the ellipticity of the vortex cores.

Figure 6.5 Flow visualization of a turbulent vortex ring. Glezer and Coles [1987].
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Numerical Results and Discussion

We now present numerical results for the residence time distributions, (e, a;, and 7, propery
normalized) and discuss their dependence on £ and the parameter y. In particular, some characteristics
of the nu—erical results can be readily understood from the manifold structure.

The e, = (EN T~ %D) can be computed in one of two ways:
1. Compute the boundaries of the lobes E and T~ *D and find the area of their intersection.
2. Track area elements of the interior of lobe E to determine the area that escapes A at each cycle.

Although the first method is theoretically more satsfying, there are two substantial difficulties: (1)
the problem of the exponential stretch of the manifolds and thus of the lobe boundary and (2) the
determination of the interior of a tangied boundary for large k. We therefore use the second method
where the grid mesh on E was chosen to be sufficiently small. In figure 6.2, for large &, it appears as if
the escape area is composed of a number of isolated area elements, but this is merely the result of using
a finite number of nondeforming area clements. The actual areas in EN T~ *D must be composed of a
finite number of shapes that connect to each other or the boundary of E since T~*D is simply
connected. The appearance of isolated computational points for a relatively fine mesh ( dx = dy =
0.005 ) shows that the widths of the interior regions of E~ T~ *D become extremely narrow and
demonstrates the difficulties one would encounter when using a scheme that tracks the boundary of E or
D.

It is interesting to note how the quantities vary according to qualitative features of the manifolds.
Figure 6.6 contains plots of ¢, for two y values. The rapid oscillations of ¢, with k is typical for all
values of y and is discussed below.

We include log-linear and log-log plots as an aid to identifying possible exponential or power law
behavior but, because of the fluctuations of the e, for small and large k, we will defer the discussion of
these possibilities until the g, are presented. The small £ fluctuations consist of iwo-Cycle oscillations
with even k maxima and odd & minima. We explain this phenomenon as follows. Note that the
invariance of the manifolds gives en =p(TXE AD)=p(T*E AT™*D) and
eu-1 = W(T*E AT™D). Now in the symmetric Poincaré map T*E and T~*D are mirror images of
each other. Since near the x axis both lobes are flat, we will obtain, in general, a larger volume of
intersection than is obtained in a "transversal” intersection which occurs in the asymmetric intersection
of T*"1EA T~ *D. However, secondary intersections far from the neighborhood of the stagnation
point will relax this difference as k increases. Thus the two-cycle oscillation of the e, decays. For
larger k (k > 20) the fluctuations observed in figure 6.6 are due to the statistics of the computation. We
have verified that a finer mesh will decrease these fluctuations.

Figure 6.6 The ¢,.
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The g, are shown in figure. 6.7. Note that for small k the a,, as a function of y, increase with Y up
to Y = 0.8 then decrease undl y = 1.3 then increase again. This behavior is directly related to the
entrainment rate or lobe area given by 2€|F (Y) |+ O (¢9). (see figure 5.4). Using figures 6.7d-6.7g we
can make tentative conclusions regarding the asymptotc behavior of the a, for large £ for y= 0.5 and
0.9. Figure 6.7d smongly indicates exponential behavior for y= 0.5 or

Gy ~Pre—ra) ask 3o,

i.e. a constant probability of escape from A-C for large ~. For v < 0.5, similar exponential behavior 1s
indicated. For y > 0.5 there are no strong indications [or either exponential or power law behavior with
the possible exception of Y =0.9. For y= 0.9, figure 6.7g suggests a power law behavior for a, or

A
Qe = (re —ra)
i.e. a decreasing probability of escape as k — oo,

Figure 6.7 The a,.

Fitting an exponential for th” 4, by using a ieast square method for the iog-linear plots, we can
compute 7, using (6.10):

c e-(lk.

Fa=lry 1= 3 G ~ teg=1 =
1=y 1~e

where c and « are related to the best linear fit coefficients. The results are presented in figure 6.8 where
rs0, ' » and the bounds on r., computed via the least square method are presented. The exponents we
get are relatively small and therefore the linear fit to the log-linear piots, as well as the results for 7., ,
should be taken with caution. ’

Figure 6.8 The Core Area.

The core C is not necessarily composed of only one rcegion. In fact, we find that the core splits into
at least two separate domains for y= 1.38 for example. This is indicated ‘rom the photographs of the
escape map (figure 6.9a,b), in which the red regions can be approximately identified with the core.

The appearance of a different number of regions with bounded motion for different ¥'s is the result
of the distinctive resonances associated with each y value. Recall from section 4 that the streamline
associated with a p/q resonance is determined via the relaton T(/)2rxy=p/q. Therefore, as y
increases, the streamline corresponding to the above relation has larger period and hence must be closer
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to the mixing region. Therefore, assuming that the largest KAM torus position is approximately
independent of y, we expect that as Y increases more resonance bands are present outside the largest
KAM torus and with further increase in v, they approach the manifolds and become unobservable. The
scenario which is shown in figures 6.9 and 6.10 fits the above description as follows:

For y=0.3 the p =4 ¢ =1 resonance band outside the largest KAM torus is manifested as four
white spots outside the large white region - the main core. (In figure 6.10c the unstable manifold is
plotted, and the white regions are the regions which the manifold cannot penetrate). In figure 6.10a,
where the escape map for Y=0.5 is plotted we observe only one core region - the g =1 p =4
resonance band disappeared in the vicinity of the manifolds and no other resonance bands appear. As vy
increases to y=1.38 the p =1 ¢ =1 resonance band appears outside the largest KAM torus and two
core regions are revealed in figure 6.10b.

Figure 6.9 The unstable manifold fory= 0.3 .

Figure 6.10 Escape map for a) Y= 0.5, b) ¥ = 1.38, ¢) y = 0.5 with the stable manifold of p.. in white.

7. Chaos

We have seen that transport between the core and the free flow region can be understood by
studying the interaction between the stable and unstable manifolds of p., and p_;, respectively. Now
we want to show that this interaction gives rise to another important dynamical effect, namely chaotic
fluid particle motion.

Roughly speaking, chaotic fluid particle motion may result when structures in the flow conspire to
strongly stretch, contract and fold a region of fluid. In our flow the tangling of the manifolds provides
the folding mechanism and the fixed points P+, and p_, provide the strewching and contraction
mechanism. The notion of chaos is made unambiguous when we show that this scenario enables us to
prove that the Poincaré map possesses Smale horseshoes using the Smale-Birkhoff homoclinic theorem,
see Guckenheimer and Holmes [1983)] or Wiggins [1988)]. Consider figure 7.1 and the "rectangular”
region of fluid denoted R. Following the evolution of this region under iteration by the P~‘ ~car¢ map T
we see that it 1s folded, stretched, and contracted and eventually mapped back over itself i &i  shape of
a horseshoe.

Figure 7.1. The Geumetry of the Horseshoe Map.

We leave out the details but using techniques which can be found in Moser (1973] or Wiggins (1988]
one can show that "R" contains an invariant cantor set A such that T%| ,, for some n 21, has
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1. A countable infinity of unstable periodic fluid particle motons of all possible periods.
2. An uncountable infinity of unstable nonperiodic fluid particle motions.

3. A fluid particle whose orbit under T" eventually approaches every otlier point in A arbitrarily
closely.
A is called a chaotic invariant set for T". We remark that in Moser (1973] and Wiggins [1988] it is
shown that by a continuous change of coordinates T"| 4 can be transformed into a Bernoulli process
hence making precise the notion of deterministic chaos. The construction shown in figure 7.1 could be
repeated near any transverse heteroclinic point hence Smale horseshoes and their associated chaouc
dynamics exist throughout that part of the mixing region in A.

So the existence of transverse heteroclinic orbits in a heteroclinic cycle give rise to Smale
horseshoes and are therefore the underlying mechanism for chaos. The Melnikov function allows us to
determine if transverse heteroclinic orbits are present in the flow and hence give a specific criteria for
the presence of Stnale horseshoes in terms of the system parameters.

It should be apparent that the presence of horseshoes in a fluid flow may have a significant effect on
neighboring fluid particle motions. However, it is difficult to quantify this effect Two things can be
said:

1. The unperturbed velocity field is integrable; therefore typical fluid paiucles may separate at a
linear rate at best. However, in the perturbed velr-ity field, nearby fluid particles may separate at
an exponential rate and moreover tw presence of horseshoes may cause fluid particle motions in
the mixing region to become rapidly uncorrelated. Intuidvely, one would believe that horseshoes
are desirable in order to enhance mixing. We discuss these issues in the next section.

2. In order to quantify the mixing of fluid between the core and the free flow region one must
understand the dynamics of the interface, i.e. the stable manifold of p,, and the unstable
manifold of p_,. Thisis a tépic which we are currently investigating in more detail. However,
from our previous description a significant observation can be made. That is, in the unperturbed
velocity field the interface separating the core and the free flow region has finite length but in the
perturbed velocity field this interface has infinite length.

8. Stretching and Elongation of Material Elements

In this section we investigate the rate of stretching of material elements in the Oscillating Vortex
Pair (OVP) flow and its relation to the time spent in the mixing region. The classical measure for
quantifying the local stretching of material lines on the average is the Liapunov exponent, see for
example Khakhar, Rising and Ottino (1986). The motivation for computing the Liapunov exponent is
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that it quantifies the chaos in some systems; when a positive exponent exists nearby Tajectories diverge
from =ach other exponendally. This notion is particularly useful when dealing with dissipative systems
with artractors, since then all initial conditions will eventually diverge as much as trajectories on the
attractor diverge. In the OVP flow we have proven the existence of chaotic orbits and we therefore
have positive Liapunov exponents for those orbits. However, this set of chaotic orbits is of measure
zero. Nevertheless, these orbits are responsible for the expansion and contraction in the mixing region:
material elements passing through this region will experience the exponential stretching and contraction
of the chaotic orbits. Most material points remain in this chaotic zone for only a finite time, which
implies that their exponents vanish. Hence, in our application, the Liapunov exponent is not a useful
measure of the stretching of material elements. To quantify this phenomenon we consider the total
stretch or elongation of a material element due to its motion through the chaotic region. As discussed
in section 4, we concentrate on analyzing the behavior in the mixing region.

We start by defining the stretching rate and its relation to the Liapunov exponent following the
formulaton of Khakhar, Rising, and Ottino {1986]. We write (2.3) together with (2.5) in the form:

p=F(p.t) 8.1)

where p= (x, y). The linearized equation about an arbitrary solution of (8.1) is given by

m = DF (p(t), t)m (8.2)

where DF is the matrix of partial derivatives of F.

We define the stretch of an infinitesmial material line dx emanating from p with orientation m at
t=0 as M(p, m, t). Itis clearly given by

s

|m |

k.(p.m.t)wJ-z'-Ql (8.3)

where m(¢) is a solution of (8.2), m#0. The Liapunov exponent of the orbit p is defined as

o(p,m):lim-}-tnup.m.:) (8.4)
{ =ben

We now concentrate on the region of our interest, the mixing region. By (6.15) this region is composed

of \ Dy therefore we n-ed to investigate the orbits in the D, lobes only. While p is in the chaotc

& wen

region, we expect, by definition, that the instantaneous stretching rate, % , will have a positive average.

After p escapes however, we expect smretching to decease substantially. In fact we have been able to
show (Rom-Kedar [1988]) that
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ln},(p,m,t)=B(p.m)+x(p,m.t)+O(-:;) for 1>t (8.5)

where 7 is the time required for p to be entrained and then escape from the chaotic region and
x(p,m,t) is a periodic funcdon in t with zero mean and is a result of the oscillating strain-rate field
that persists far from the vortex pair. This behavior is demonstrated in Figure 8.1 where we show In A

and —i’— for a paricle initially in the chaotic region and escaping after i2 cycles. Also shown is %

averaged over each period to filter out the ¥ component.

Thus the Liapunov exponent given by (8.4) is identically zero for almost all particles anc, in OVP
flow, B of (8.5) remains as the useful physical quantity which measures the total elongation of a line
element. In particular we will concentrate on the maximal elongation of an infinitesimal neighborhood
zround p with exponent given by

B@)=m3x B(p.m)

Physically, an infinitesimal dye blob of radius |m | placed at p at ¢=0 will have its length amplified by
exp (B) while it is in or near the chaotic region and, from then on, its length wili oscillate periodically
with mean exp (E){m | Note that we need to maximize B over m in contrast with the procedure for
finding the largest Liapunov exponent, where almost all vectors will stretch at the same rate evenr.
This is the result of analyzing the finite time elongation instead of the asymptotic resuit. The metnod i
obtain P follows.

Let M(t) be the fundamental solution matrix of equation (8.2) so that

M =DF(p(t):)M (8.6)
. M©) =1

Then, a general solution m(t) of equation (8.2) is given by:
m(t)=M(t)m
Therefore,

'
T aT
max A(p, m, t) = max [E—MT—Mi} =\Jp(M’M)
m m m

m

where p(MTM) is the maximal eigenvalue of M7M. (Note that in general Vp(MT M )#p(M), see
Goldhirsch et al. [1987] ). To compute p(MTM) = p(MMT) we develop an ODE for the components of
MMT , noting that in two dimensions p(M M) = p(MMT).
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Since the OVP flow is irrotational and incompressible the matrix DF (g (r).r) is symmetric and has
the form:

a(®) b@)
D""‘”"“[b(z) -a(:)]

where a(t)=g—:(p (t)) bt )=%;‘—'(p (t).2)

Using Eq. (8.6) and the above form of DF we obtain
T
i—(MMr)a% MT +M -d-MdT = (MMT)DF +DF(MMT) 3.7

Now MMT is a symmetric matrix of the form

]

rs

And equation (8.7), written in component form gives a system of three ODE's for the matrix elements
q.r.s . Since deMMT)=1 we obtain the following expression for p(MM T):

g+s +V (g+s )2-4
2

PPMT) =

The quantity q + s can be obtained either from the ODE'’s for q, r, and s or by solving the integral
equation:
2

t 2 '
(q+s)2-4{1a(:’)(q+s)(z ‘)d:'} +4[jb(!')(q+s)(t')dt'} +4.
0 0

Using the former technique we have found E for a sample of 530 initial conditions in region
ANy D_,. The results are presented in Figure 8.3 where we plotB versus the escape cycle of p.
k=0

Though E takes on a range of values for each escape cycle, the general iendency ofﬁ to increase with
the escape cycle, as expected, is clear. In Figure 8.4, we show the average of B over the set of initial
conditions having the same escape cycle. The results indicate that the average stretching rate is
correlated with residence time, namely, a longer residence time implies a lower average stretching rate.

To summarize, we have shown that the Liapunov exponents vanish in the OVP flow in the mixing
region. This is a result of the flow being open with localized chaos, allowing fluid particles to be
convected to infinity after a finite amount of stretching. Therefore we use the total stretch, exp (E). the
elongation of a fluid element while in or near the chaotic region, to quantify the chaos. We found that,




34

on the average, this quantry increases with residence time but thai the average stretching rate tends to
decrease with residence time.

9. Summary and Conclusions

We have invesugated the flow governed by a vortex pair in the presence of an external strain-rate
field that oscillates sinusoidally in dme. In particular, we studied transport and mixing of passive
particles in this flow. The flow depends on two dimensionless parameters - the period of the osctllation
divided by the time required for the vortex pair to0 travel a distance equal to their separation and the
strain-rate amplitude divided by the oscillation frequency.

If the amplitude of the external field is zero then, in a frame moving with the vortex pair, the flow is
steady. A fixed, closed volume of fluid is tapped and moves with the vortex pair for all time. This
volume of fluid or "bubble” is bounded by two limiting streamlines that connect at two hyperbolic
stagnation points, one on the upstream side of the bubble and one on the downstream side. No
entrainment or detrainment takes place into or cut of this volume. Mixing is poor as two particles an
infinitesmial distance apart only separaie at most linearly in time for large times, i.e. the Liapunc
exponent is zero.

If the strain-rate amplitude is nonzero, the flow is time-periodic in a frame moving with the average
speed of the vortex pair and each vortex moves on a closed orbit in this frame. However, some particle
motons are quite complicated. During each cycle of the oscillaton a certain volume of fluid that
approaches from the upstream side is entrained into the fluid bubble moving with the vortex pair. A
particle within thus entrained fluid volume moves chaotically during its time of residence in the
comoving bubble. These particles subsequently escape (are detrained) according to a discrete
distribution over the number of cycles in resi-lence till escape. Another distribution of residence tmes,
that corresponding to those particles initially ... the bubble at cycle zero, is easily computed from the
former distribution. .

A quantitaive understanding of this transport mechanism was best achieved by examining the
Poinc. ré map for the particle motion. In particular, we considered the stable and unstable manifolds of
the two hyperbolic fixed points of the map. For the unperturbed flow, the fixed points coincide with the
stagnadon points in the flow. Similarly, the unstable manifolds of the upstream fixed point and the
stable manifolds of the downstream fixed point coincide with the limiting streamlines in the unperturbed
fiow and, therefore, coincide with each other. For the perturbed flow, these manifolds break apart and
intersect each other transversally, forming a tangle. Within this tangle there are two infinite families of
lobes vith the boundary of each lobe consisting of a segment of the unstable manifold and, the
remainder, a segment of the stable manifold. Any given lobe generates all other lobes in the same
family by mapping backwards and forwards in tme.
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One lobe in particular will be entrained during the next cycle and, in tne other family, there is a lobe
that will be detrained. By incompressibility all lobes have the same volume and it is this amount of
fluid therefore that is entrained and detrained during each cycle. Lobes within a given family do not
intersect one another. However, lobes from one family intersect members from the other famuly. The
areas or volumes of intersection correspond directly to the residence time distributions mentioned
above. Thus we have a tangle dynamics. Namely all information concerning, transport or dispersion of
particles in this two-space plus tme-dependent flow field is generated by one-dimensional objects - the
stable and unstable manifolds of the fixed poin's of the Poincaré map.

The above results do not require that the strain-rate amplitude be small. Howevet, if the amplitude 1s
small we used regular perturbation theory in the form of the Melnikov technique to check for the
existence of transversal intersections and to estimate the width of the fluid zone along the original
dividing streamline that partcipates in the exchange process. [n addition we have shown that the lobe
area is proportonal to the integral of the Melnikov function over one cycle. This analysis showed that,
as the period of oscillation increases from zero, the entrainment rate rises from zero to a maximum then
falls to zero and rises again. This behavior is the result of two competing effects conceming the
advection of particles near the limiting streamline at the top of the bubble, one effect is to advect
particles into the bubble during one cycle while the other advects particles away from the bubble.

For arbitrary values of the strain-rate amplitude the lobe structure may be computed numericaily.
This is 2 relatively simple matter because the unstable manifolds are attractors in forward time and the
stable manifolds are auractors integrating backwards in time. Of course, as one attempts to follow .
given lobe for a large number of cycles a rapidly increasing number of points is required to define the
structure of the lobe boundary because of the chaotic motion of the boundary points that remain in the
bubble. Lobe intersection volume may be computed by tracking lobe boundaries as described above but
as an altemadve method, and the one used in thic paper, one can simply track a uniform array of
closely-spaced points that initially fill only the lobe that will be entrained during the next cyc‘le.

We have shown that the existesice of transverse heteroclinic orbits, i.e. the lobe structures, gives rise
to Smale horseshoes as a result of a stretching and folding mechanism present in the Poincaré map.
These horseshoes represent the underlying mechanism for chaotic particle motion. To quantify this
chaotic motion and, in particular, the rate of stretching of material elements, we investigated the total
elongation of an infinitesmial material element and its dependence on time spent within the bubble.

The concepts and analysis discussed in this paper should be useful in a wide variety of 2pplicatons.
Further development might concentrate on (1) extension of the present results for time-periodic flows to
quasi-periodic or chaotic fluid flows, (2) connecting tiie present work to coarse-grained approaches to
turbulent transport using convection-diffusion equations, and (3) developing analyucal techniques for
the lobe intersection problem by, for example, dznving appropriate one-dimensional maps.
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Appendix 1: Vortex Pair in a Wavy-Wall Channe}
We sho v that the particle motion given by (2.3) and (2.5) approximates the motion in the vicimty of a

vortex pair moving in a wavy-wall channel. Consider the following soluton to the Euler equations,
given by the streamfunction of a vortex pair, ¥, , plus the streamfuncton of a potential fl~w:

Y=y, +9, (Al.1a)
where
N7 ___Llog(x--va)’4-(y'-yv)2 AL
’ am T x-x)+ @ +y)? (AL1D)
and

Yoo = (V + 2V ())y - k—ezcos(kx)sinh(ky) (Ailc)

Here £ T are the circulations of the vortices whose positions are (x, (), £y, (¢)), V + €V (€) the average
fluid velocity in the channel far away from the vortex pair and eV (e) is defined such that the average
velocity of the vortex pair is independent of e (see below). The vortices move with the fluid velocity
given by

»

¥ Ay ¥

=g & - -a—x- (Al1.2)

dx
dt
For e = 0, we have
r
)=V +m)t (AL.3)
»it)y=d

Seuing ¥ =¥ _,; =const in (Al.1a) and assuming that -yy—'—<<1 we find the equation for the wall
wail

boundary,
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Y = Ywaut(x) (Al.3)
\Pwﬂ Evl(o)‘*‘mﬂ £ k\Pmﬂ Yv
= - + ——sinh jcos(kx) + O (%) + O (——
7 v oy ( v (kx) (%) (y..uu)

confirming that equatons (Al.1) represent flow in a wavy-wall channel where the walls are sufficiently
far from the vordces.

Now we compute particle motion by (Al.2) and let x =X + f (), x, (1) =2 X, (2) + f (1). If ¥, «!
and ‘ve consider the flow field near the vortices with kv << 1, then we obtain the desired form:

Ez_lf_[ Yo - o 1' (Al.Sa)
d W @ -5+ @ -nl E-E+ G +n) ) i
-V, +exdsin(axe) + O (e2)
dr AN RS SR A D £ S LI VESHL
- gysin(wr) + O ()
if f(t) is the soludon to
g __E I a2
e kcos(kf(r))+V + and + e°V,4(e) (Al1.6)
where V4(€) is defined such that
O =W ) +egt0) (ALT)
=V g T .
where g is periodic in t. We also have that
o=k(V +—r;-) (AL1.8)
4rd
and
V, = —— eV o) (A19)

4rd

Appendix 2: Expansion of the Equations of Motion
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The nondimer sional equations of motion (2.3) have the following erpansion in e:

dx
= =S ) reixy i+ 0D (A2.1a)
%=fz(xv)’)+€82(1-)"f/72‘f)+0(€2) (A2.1b)

where the f, are given dy:

y =1 y + 1 1
fx—-‘-,_—'*‘[—-'z- (A2.2a)
11
J2=x II_:-T:J (A2.2b)
and the g, are given by:
('
_ Lol 2= 2y +1)7?
81-[COS(I/Y)-1]1\I—_'+T:- e /2 +
. .L_. L_.l ] 1
(x/v) sin(trp 4 ¥ % ' +1] -3 (A2.3a)
g2=2x [cos(t/y) - II{L- le}
. ’ 1 1 - 1 1 1
(17y) sin(e /4 -Zﬁ,:t - T:J —x“?l {’F - EJ -yJ . (A2.3b)
The definitions of /, are
I+ =x%+ (y £1)? (A2.4)

Appendix 3: The Melnikov Function

In this appendix, we want to discuss some aspects of the Melnikov Function. Specifically, how it
arises and what it measures. Recall that the perturbed velocity field can be written in the form
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t=filry)+egi(x.y, N+ OED
y=fax.y)+egax,y.0.7)+0() (A3.1)
8= l/‘Y

As a convenient shorthand notation we will often write (A3.1) in the following vector form

q=f(q)+€8(q, 87 +0(D (A3.2)

8=1/y

whereg =(xy).f =(f1.fo, and g =(g1. 2.

In each case the unperturbed velocity field is obtained by taking € =0 in (A3.1) and (A3.2). We
study the two dimensional Poincaré map T obtained from the solutons of (A3.2) which is defined as
follows:

T:¥ 573 (A3.3)
(x(0). y(0)) b= (x(2my), y 2r)).

Recall that the Poincaré map obtained from the unperturbed velocity field has saddle peints at p, and
p - which are connected to each other by the three heteroclinic orbits ‘¥, , Yo, and ‘¥, (see Figure 2.1).
As noted earlier, by symmetry of the unperturbed flow ‘¥, remains unbroken under the external strain.
We use the Melnikov function o determine the behavior of ¥, and ¥, . Since the perturbed velocity
field is symmetric about the x-axis, for definiteness, we will only draw pictures of the upper half plane
in our develonment of the Melnikov function.

The consiruction of the Melnikov function consists of four steps:

. Develop a parametrization of the unperturbed heteroclinic orbit in the Poincar€ section.

2. Define a moving coordinate system along the unperturbed heteroclinic orbit in the Poincare
Section.

3. Define the distance between Wi, and WY, in the moving coordinate system at points
along the unperturbed heteroclinic orbit.

4. Utlize Melnikov’s trick to develop a computable form for the geometrically defined
distance between W4, and W¥, o the points along the unperturbed heteroclinic orbit.

We begin with Step 1.

Step 1: Let ¢, (¢) denote a heteroclinic trajectory of the unperturbed velocity field which lies in ‘¥, .
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Then since the unperrurbed velocity field is not time dependent (i.e., it is autonomous) g, (¢t = to) is also
a heteroclinic trajectory of the unperturbed velocity field which lies in ¥, for any ry € R (see Amold
(1973] for a proof of this fact). Thus q,( —¢q), fg € R provides a parametrizaton of ‘¥, where ¢ is
the unique time that it takes for a fluid particle on ‘¥, to flow w0 ¢, (0).

Step 2: The vector f<(q,( = t0)) = (= f 2qu( = t) £ 1(qu( = i@) is perperdicular to ‘¥, at each point
qu(=tp) on ¥,. Thus varying ¢o will serve to move f «q,( - o)) aiong ‘¥, and the distance between
Wi, and W¥, will be measured along f (g, ( = to)).

Step 3: At e =0, Wi and W? intersect f 4q,( — o)) transversely at each ¢, (- to) € ¥, (see Amold
[1982] for a definition of the transversal intersection of two manifolds). The intersections are preserved
under perturbations so that for € sufficiently small W{, and W, intersect f <(q, ( — ro)) transversely in
the points g and g¢. Thus we define the distance berween W4, and W , ar the point q,( - tg) to be

distace =|qy - q¢ |- (A34)

11
See Figure A3.1.

Figure A3.1. The Geometry of the Distance Between W, and WZ,.

The problem with this definition of the distance is that is does not lend it¢ 2lf to an expression which can
easily be computed without solving explicitly for fluid particle motions of the perturbed velocity field: a
task which would be quite formidable. However following Melnikov [1963], we define the following
"signed” distance measurement

fHq"(=t0))  (qe —q¢)

d(itp,e)= (A3.5)
for ) (@ “(=t)]|

where " denotes the usual vector dot product. It should be clear that by the choice of g3 and ¢§ that
d(rq, £) =0 if and only if g¢ = q¢.

Now because W4, and W, vary differentiably with respect to parameters (Fenichel (1971], Hirsch,
Pugh, and Shub {1977]) we can Taylor expand (A3.5) about € = 0 to obtain

An Y s
FHqu(=20) (daqe !z-o- 3518 I;-o)

” f(qu("‘ﬁ)) “

dtme)=e +0 (e) (A3.5)

where we have used the fact that ¢§ = ¢}.



The Meinikov function, denoted M (t), is defined to be:
a9t 2qi
M(t‘a)=f‘(4u(-fo))'(a—;'le-o-'sa—t‘;.o) (A3.7)

and is (un to the normalization factor || f(q,( = tg) I'~1) the leading order term in the Taylor series
expansion for the distance between W1, and WZ, at the point ¢, ( - ¢q).

Step 4. Melnikov [1963] was able to derive an expression for (A3.7) without explicily computing
particle paths of the perturbed velocity field. ilis procedure consisted of the following steps

a). Prove that the particle paths of the perrurbed velocity field through the points ¢¢ and ¢}
exist on the time intervals { — o, 0] and (0, ), respectvely.

b). Using a) along with the first vanational equation for solutions through ¢¢ and gi (ie.
regular perturbation theory) derive a linear first order ordinary differentiai equation for the
time dependent Melnikov function

aq¥(t) aq:(t)
qale {emo— qaze {em0) (A3.8)

M(t.2o) =fH4qu(t —tg) - (

where g¢(r) ana qg(¢) are particle paths of the perturbed velocity field satsfying
q¢(0) = ¢ and g7 (0) = g¢, respectively. Thus M (0, 1) = M (¢).

¢). Solve the linear first order differential equation for M (¢, ty) and obtain the Melnikov
function by evaluating at ¢ = 0. In the process boundary conditions for the solution at +es
are imposed which were the reason for needing the existence proof of particie paths con
semi-infinite ime intervals as described in a).

rl

For the full details of these steps see Guckenheimer and Holmes (1983] or Wiggins [1988]. Finally.
one obtains the following form for the Melnikov function.

M(to) = f [f 1qu(®)) 82(qu(t). t +10) = f 2(qu(t)) 81(qu (), t + to)] dt (A3.9)

and we have the following key theorem.

Theorem A3.1. Suppose there exists £y = 7 such that

1) M(t_o)=0
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oM
2) TR (to) 20

Then W, and WZ, intersect transversely near ¢,( - 7). If M(to) is bounded away from zero for all
t., tnen Wi, and W2, are bounded away from each other.

Proof. See Guckenheimer and Holmes [1983] or Wiggins [1988].

Thus we can determine whether or not Wi, and WY, intersect without solving for fluid particic
motons of the perturbed velocity field.

We now want 0 point out two properties of the Melnikov function which are important.
1. Zero's of M (to) Correspond to Primary Intersection Points

The Melnikov function is a first order measure of the distance between W1, and W%, along the line
f42.(~1%). However, it is possible that W%, and W*, may intersect f 4(g,( - o)) many times as
depicted in Figure A3.2. The question arises of which two points on Wi, N f«q,(-tg)) and
W N f4qu(—10) is the distance being measured. The answer to this question comes from the
validity of the regular perturbation theory which was used to obtain a computable exgression' for the
Melnikov function (step 4). The fact that we can approximate fluid particle motions of the perturbed
velocity field uniformly only on semi-infinite time intervals coupled with the geometry of the tme
dependent Melnikov function implies that the Melnikov function is a measurement between points in
Wi, and W*, along f4q,(—t%) which are "closest” t0 p, . and p_, , respectively, in the sense of
<lapsed time of motion along W4, and W%,. These points are denoted g, and §, in Figure A3.2.
From definition 5.1, it follows that g; and g, are primary intersection points. For more details see
Wiggins (1988].

»

Figure A3.2. Intersecticn of the Manifolds with f (¢, (-~ t@)
2. The Relative Displacement of W4, and W,

Since transport in the mixing region is governed by Wi, and WZ, it is useful to know their relatve
positions and, because the Melnikov function is a signed distance measurement it contains this
information. From the definition of the distance between W, and WZ, given in (A3.5), it is simple to
show that the geometry of the manifolds shown in Figure (A3.3) holds. For the OVP flow the Melnikov
function is given by equation 4.3 and Figures 4.3 and 4.4 confirm the relation between the Melnikov
function and the relative positions of the stable and unstable manifolds for this flow.
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Figure A3.3. The Melnikov Function and the Relative Orientations of the Manifolds.
3. Periodicity of M (to)

The Melnikov functon is a periodic function of ¢t having the same period as the extemal strain field
(see Guckenheimer arid Holmes [1983]). This is an indication that one heteroclinic point implies the
existence of a countable infinity of heteroclinic points.

Appendix 4: The Melnikov Function and Lobe Motion

We now give the proof of Theorem 5.1 which is restated below:
Theorem 5.1. Suppose M (¢() has 2n simple zeros in one period T. Then

) T(E;)=E, .,
2) T(D,) = D;1a

Proof: From Appendix 3, simple zeros of the Melnikov function correspond to pip's. We Jenote the 2n
zeros of M (¢o) in one period as follows:

E<qP<qbii <. <qfiaci <qPan
where the notation and ordering (see definition 5.3) are chosen such that £;,, is formed by ¢£, and
q2, and D, ., is formed by ¢2, and ¢&,,; fork=1,....n-l.

Now by orientation preservation pip’s maintain their relatve ordering along W%, under iteration by
T and because the velocity field (and hence the Melnikov function) is periodic in time with period t we
have: ‘

T@q5) =9l
and

T@P) =dl
Then by definition it follows that

T(E)=E

and
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T(Di)=Disa a

Appendix S-Some Properties of Poincaré Maps

In this appendix we will point out some general properties of Poincaré maps which have fuid
dynamical consequences and are not usually discussed in standard texts.

L.

Area Preservation. A consequence of the conservation of mass is that the Poincaré map preserves
area.

Orientation Preservation. Poincaré maps obtained by discretely sampling trajectories of ordinary
differential equations have the property of preserving the orientaton of area elements.
Analytically, this means that the determinant of the Jacobian of the map is strictly positive over
its domain of definition (note: by area preservation the determinant of the Jacobian is identically
one). Geometrically, orientation preservation can be described as follows. Consider a simply
connected area element D with three points denoted a, b, and ¢ on the boundary of D. Suppose
that as one walks along the boundary of D in a counterclockwise sense (i.e. with the left arm
pointed toward the interior of D) beginning at a so that next b and then ¢ is encountered. Now let
T3(D)=D " withTg(a)=a", Tgb)=b", and T5(c)=c " Tj is orientation preserving if as
one walks along the boundary of D “ in a counterclockwise sense starting at g * then next b “ and
then ¢ “ is encountered. This implies that the interior of a closed curve is mapped to the interior
of its image. See Figure AS.i for an illustration of the geometry of orientation preservation.

Figure AS.1. Orientation Preservation of T,

Variation of the Cross-section 25. Notice from (3.2) that the Poincaré map depends on the phase
of the strain-rate field. The question then arises as to how the Poincaré map changes as the phase
of the field is varied? Fortunately, there is no qualitative difference in any of these maps. The
technical term is that the different maps are differendably equivalent (see Irwin [1980]) which
means that given any two Poincaré maps obtained by fixing two different phases of the strain-rate
field there exists a differentiable change of coordinates which transforms one map into the other.
In particular, the nature of the stability of a fluid particle trajectory is the same for each Poincare
map. Since there is no qualitative difference in the Poincaré maps we will take 8 = 0. This choice
has the advantage that the Poincaré map on this cross-section is symmetric about the y-axis with
time reversed. We refer to the associated Poincaré map as T.

Flow Dynamics via the Poincare’Map. In studying the motion of fluid particles the concepts of
streamlines, pathlines, and streaklines are very nawural. However, as mentioned earlier, their use
in the study of unsteady flows is limited since their relatonship to such dynamical phenomena as
mixing and transport properties may be unclear (Ottino [1988]). In fact these concepts may be
misleading. For example, Hama[1962] showed that streaklines and pathlines in a time-dependent
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laminar flow may look turbulent. In the context of the Poincar¢ map, the dynamical evolution of
fluid particles is expressed in terms of the orbits of the Poincaré map. The orbit of a fluid particle
is defined as follows: Let p be a fluid particle, then the orbit of p under T is the bi-infinite
sequence of points given by:

{...‘,T"'(p)...A.T“l(p).p.T(p)......T"(p).....]r

J

where

n factors

/‘\M
T"@;=TTCTPE)).
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FIGURE CAPTIONS

Streamlines of the Unperturbed Flow.
Resonance Bands and “AM Tori.

The Homoclinic Tangle in the Mixing Region.
Graph of F ().

Numerical Computations of the Invariant Manifolds for Various Param ¢ Values,
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The Geometry of Region A, a) unperturbed flow b) perturbed flow.
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Geometry of E N T~** 1D for Various Values of k. a) y=0.5. b) y=C.9.

Comparison of the Brute Force Calculation and the Reduced Calculation for v=0.5,
®  brute force calculation witih mesh = 0.00S,

[0 reduced calculation with mesh = 0.005,

©  brute force calculation with mesh = 0.007S.

The Motion of a General Initial Shape B, a) =0 b) t=2ryc) t=dny.
Flow visualization of a turbulent vortex ring. Glezer and Coles (1987].

The &, a) y=0.5, log-linear plot b) y=0.9, log linear plot c) y=0.5, log-log plot d) y=0.9,
log-log plot.

The a,, a) ¥=0.3, 0.5, 0.7 b) ¥=0.9, 1.1 ¢) y=1.7, 1.9 d) y=0.5, log-linear plot ¢) y=0.5.
log-log plot f) ¥=0.9, log-linear plot g) v=0.9, log-log plot.

The Core Area: w 7sy/\W(A), s r./u(A), + upper and lower bounds on r J/u(A)

The Unstable Manifold for y=0.3.
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Figure7 1
Figure8.1

Figure8.2

Figure8.3

FigureA3.1
FigureA3.2
FigureA3.3

FigureAS.1
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The escape map for a} v=0.5 b) y=1.38 c) y=0.5 with the unstable maaifold plotted in
white. The inital conditions are colored according to their residence time: the color is
graded from blue via green to red with residence time from 0 to 50 cycles.

The Geometry of the Horseshoe Map

a) i‘- for an Initdal Condition in A-C. b) ln A for the Samce Initdal Conditdon.

The Toral Stretch .

The Total Stretch Averaged Over a Sample of Initial Conditions With the Same Escape
Cycle.

The Geometry of the Distance Between W1, and W¥,.
Intersection of the Manifolds with f L(q, (= o))

The Melnikov Function and the Relatve Orientations of the Manifolds.

Orientation Preservation of T.
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TRANSPORT, MIXING AND STRETTHING IN A CHAOTIC STOKES FLOW:
THE TWO-ROLL MILL

Paper published in the Proceedings of the Third Joint ASCE/ASME Mechanics Con-
feence in La Jolla, CA. July 9-12, 1989. Editor: K.Ghia.

Tasso J. IKaper and Stephen Wiggins
Applied Math and Applied Mechanics Departraents
Caltech, Pasadena, CA 91125

Abstract We present the outline and preliminary results of an analytical and numerical
study of transport, mizing, and stretching in a chaotic Stokes’ flow in a two-roll mall
apparatus. We use the theory of dynamaical systems to describe the rich behavior and
structure ezhibited by these flows. The main features are the homoclinic tangle which
functions as the backbone of the chaotic mizing region, the Smale horseshoe, and the 1sland
chains. We then use our detailed knowledge of these structures to develop a theory of
transport and stretching of fluid in the chaotic regime. In particular, we show how a
specific set of tools for adiabatsc chaos- the adiabatic Melnikov function (4,5,6,19], lobe
area and fluz computations [6/, and the adiabatic switching method [7/- is 1deally susted to
develop this theory of transport, mizing, and stretching in time-dependent two-dimensional
Stokes' flows.

1.Introduction

Chaotic advection or lagrangian turbulence in two-dimensional time-periodic low
Reynolds number fluid mechanics problems has been observed experimentally and numeri-
cally [1.2,3,8.9,16]. Under slow time modulation of a steady state configuration these flows
simultaneously exhibit chaotic particle paths and large scale structures {1,2.3,8,9,18). These
features include homoclinic tangles [8], Smale horseshoes with their attendant chaotic dy-
namics [8.16], island chains (1,2,3,8.9.16], and whorls and tendrils (1,2,3].

The theory of dynamical systems has been used to explain some of these phenomena.
This is because time-dependent two-dimensional fluid mechanics problems can, depending
on the stirring protocol, be treated either as one degree of freedom Hamiltonian systems
(3,8,9.16] or as nonintegrable area-preserving maps [1,2,16].

The field of time-dependent, two-dimensionai Stokes’ flows remains largely unexplored,
however. In addition to developing the mathematical description of these flows within the
framework of the quasisteady Stokes’ approximation, there are many open questions about
the transport and mixing of fluid particles, and about the stretching of line elements in
these flows. For example, what is the size of the mixing zone? Given that one can define
different regions within the mixing zone, what is the rate of transport of fluid into and
out of these regions? What are the characteristics of the residence time distribution in
each of these regions? At what rate must the flow field be modulated to achieve the most
efficient mixing and the most efficient stretching of a line segment of tracer particles? We
emphasize that this is just a partial list.

Furthermore the dynamical systems tools (4.5.6,7,19] specific to time-periodic, two-
dimensional Stokes' flows have not been applied to any of these problems, except in a brief
talk on the eccentric journal bearing problem by the first author [8]. These tools include
the adiabatic Melnikov functioa [4.3,6,19], action integrals for flux and lobe area (6], as
well as the adiabatic switching method (7].
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The purpose of this paper is twofold. First we demonstrate why time-dependent,
two-dimensional Stokes’ flows constitute adiabatic dynamical systems. Second we show
how detailed knowledge of both the structures in the fluid and the theory of adiabatic
dynamical systems can be used to answer some of the questions asked above. The first
part is valid for flows with general time dependence and is discussed in section 2. The
second part focuses specifically on continuously modulated time-periodic Stokes’ flows in
the two-roll mill apparatus and occupies the remainder of the paper. Despite this narrow
focus in the second part, however, our results are applicable to other two-dimensional
Stokes' flows which are periodic or quasiperiodic in time.

This paper is split into six sections. As mentioned before, we present the discussion.
comprising the first part of this paper, of why time-dependent, two-dimensional Stokes’
flows are adiabatic dynamical systems in section 2. In section 3 we present the steady state
flows in the corotating two-roll mill device. The stirring protocols for the time-periodic
flows we study are detailed in section 4. In section 3 we use dynamical systems tools to
describe the rich dynamics and structures present in the time-pe~odic flows. In section
6 we show how a detailed knowledge of this rich dynamics leads to specific formulas for
computing some of the quantities enumerated above. We report on our preliminary results
concerning the location and quantitative measurements of the size of the mixing zone for
two different stirring protocols. Finally, in the conclusion we discuss the relation between
the ﬁowl fields generated by continuous in time protocols and those generated by blinking
protocols.

We remark that this extended abstract constitutes a brief report of our wo.k to date.
We are planning a more complete paper for later publication. We alsn remark that we are
also in the preliminary stages of cooperating on a joint analytical and experimental effort
to study this problem with Dz. L.G. Leal in the chemical engineering department at UC
Santa Barbara.

2.Time-Dependent 2-D Stokes’ Flows as Adiabatic Dynamical Systems

In this section we demonstrate why a time-dependent, two-dimensional Stokes’ flow
constitutes an adiabatic dynamical system. First we discuss what an adiabatic dynamical
system is, and then we present the two main arguments justifying the above statement.

For the purposes of this paper an adiabatic dynamical system is a Hamiltonian system
which depends continuously and periodically on a parameter which varies slowly in time.
The Hamiltonian for these systems is H = H(p, ¢q; A = et), where p and ¢ are canonically
conjugate variables coordinatizing a two-dimensional symplectic manifold, A is the time-
dependent parameter, and ¢ € 1. The equations of motion are

' OH
L P,
1= (P i A)
oH
) = = — [} ;’\
p 3 (P @i A)
A=ce.
We remark at the outset that similar results exist for flows which are quasiperiodic and
aperiodic in time [6] although we do not discuss these in this paper.

During the time evolution of (1), through one period of the modulation O(1) changes
can occur in the vector field. These O(1) changs include O(1) changes in the position
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of a hyperbolic orbit, O(1) motions of the stable and unstable manifolds of a hyperbolic
orbit, and (J(1) changes in the areas in phase space of regicns which are occupicd by a
given type of orbit.

Examples in which the position of the hyperbolic orbit of (1), varies over an O(1)
distance as \ is changed slowly in time include: the corotating eccentric journal bearing
problem when the ratio of the angular velocities of the shaft and casing is greater than a
critical ratio which depends on the geometry. the pendulum with Hamiltonian, H(p.q,A) =

3

E- — cos(g + A), and as we shall shortly see the corotating two-roll mill, as well as many
other examples from particle accelerators. celestial mechanics, and plasma-confinement
systems.

The first reason that time-dependent two-dimensional Stokes’ flows are adiabatic dv-
namical systems is that they are Hamiltonian systems which depend on a parameter which
cha.nge% sllccfwly and continuously in time. These flows are described by the Hamiltonian
vector fie

I = ——(I.Y,A
Oy( yi A)

A ‘A
g: —-C—-Ii(.r.y;/\) (<)
dr

A=,

where A is the parameter which varies slowly in time, H is the Hamiltonian (streamfunc-
tion), and the two spatial coordinates r and y are the canonically conjugate variables.
Time dependent Stokes' flows must sat.sfy % = ((—L;;J_‘—)) & 1, where r is the time-scale
of the modulation and U and L are the characteristic velocity and length scale, respec-
tively, of the flow. U and L depend on the geometry of the flow field at hand. Hence if
the parameter A, such as the ratio of the angular velocities of the rollers in the two-roll
mill device or the ratio of the shaft ard casing angular velocities in the eccentric journal
bearing problem, is modulated in time, this modulation must be done continuously and
slowly enough so that the system siays within the quasi-steady Stokes' approximation,
# > L?/v. Thus from a purely kinematical point of view once one accepts the validity
of the quasisteady Stokes’ approximation for describing these flows adiabatic dynamical
system theory should be used to study them.

The second reason adiabatic dynamical systems theory should be used is that large
scale changes can occur in the flow field during the time modulation. For example, the
saddle point may move a distance as large as the characteristic length scale of the problem
- an O(1) distance - during one period of the modulation. If this happens, as it will under
the second of our two stirring protocols in the two-roll mill device, then the stable and
unstable manifolds of this stagnation point which form the homoclii ic tangle and the Smale
horseshoe also move an order one distance during the modulation. As we discussed above.
adiabatic dynamical systems theory is ideally suited to this type of slow, large amplitude
modulation.

We conclude this section by making two remarks. First, although we do not pur-
sue it in this paper, all of the above analysis applies to Stokes' flows with general time-
dependence. not just to those flows which are periodic in time, as long as one stays in
the quasisteady Stokes’' regime. This is because many of the techniques which exist for
adiabatic systems apply to systems with general time dependexace (4,6,13,19].

Secondly, regular Melnikov function theory will not be of much use for Stokes’ flows.
This is because regular Melnikov theory applies only to autonomous Hamiltonian systems
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with small amplitude, O(1) frequency forcing. Hence it can only be used for flows which
undergo small amplitude changes during the modulation. Although some chaotic advection
still occurs in this case it is not nearly as extensive as when the flow undergoes large
amplitude changes. Furthermore the requirement that the forcing be of O(1) frequency in
order for the theory to apply takes one out of the quasi-steady Stokes' approximavion. Thus
the use of regular Melnikov theory cannot be justified from a fluid mechanical stendpoint.

3.Seady State Flow Geometry

In this section, we study the steady state Stokes’ tlow generated ext.. -+ ¢+ cuio-
tating rollers of equal radii. The fluid has no velocity parallel tc the axis . - rollers.
As a result. the flow is two-dimensional and the problem can be studied as an integrable
one degree of freedom Hamiltonian system treating the streamfunction as a Hamiltonian
and the two Cartesian spatial coordinates as canonically conjugate coordinates. Fluid is
constrained to move on streamlines, and the dynamics of the flow is completely determined
by the streamfunction.

We formulate the steady state problem using the natural bipolar coordinate system
with a and 3 as the orthogonal coordinates. See figure 1 for the geometry of this coordinate
system.

Figure 1.
Bipolar Coordinate System
A & B are the points a = £

The equations of motion for the steady state are:

. v 0
& = hla, ) 53(a. 5—2)
. av Q¢

= -h(a,J)gg(a,J;Q—;

(3)
)

with no slip boundary conditions on the rollers and zero velocity at infinity, where 2, and
Qg are the constant angular velocities of the left and right rollers, respectively, and h(a, 3)
is the metric coefficient in the bipolar coordinate system. Figure 2 shows the streamline
pattern. We remark that a position-dependent change of the time variable can make (3)
Hamiltonian in bipolar coordinates.
. Fignre 2.
Steady State for Q; = Qg.

The flow field has one saddle stagnation point along the line of centers of the roliers
and two stagnation streamlines, shown in figure 2, terminating on the saddle stagnation
point. The saddle point is a hyperbolic fixed point of the autonomous Hamiltonian vector
field (3). and the two stagnation streamlines are orbits homoclinic to the hyperbolic fixed
point. These homoclinic orbits are also called separatrices. In fact, each homoclinic orbit is
the coincidence of one branch of each of the stable and unstable manifolds of the hyperbolic
fixed point. We observe tha: :he saddle stagnation point is located at the midpoint of the
line of centers of the rollers, when Q1 = Qg, and that the areas enclosed by the stagnation

streamlines depend on the value of g—‘; See figure 3.
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The sireamfuraction used in (3) will be derived in a forthcoming paper (17]. tisa

solution of the biharmonic equation V¥ = § expressed in bipolar coordinates satisfying
the boundary couditons stated above. We give it for the special case in which Q; = Qg
and then discuss the general case.

Whea Q; = Qr, we find

Qr l cn=x
Yia. Ji—) = - EnZ*d,(a)jcosni
QR /'L(Q.J) ! (4)

+ N(cosh a -- cos J)log(cosha = cos 3) + D cosh aj,

where 2,(a) = A, cosh((n + 1)a) + B,cosh(‘n - 1)a). Because ihe coefficients in $n(a)
decay rapidly with n, one can truncate the series after a finite number of terms. Then the
coctficients can determuned by imposing the following four conditions: symmetry condi-
tions. the no slip boundary conaition on the "ers, the condition of no normal velocity at
the surface of the rollers. and the rondition of zero velocity at infinity. The streamfunction
for the steady flow when the coroteting rollers have unequal angular velocities is obtained
by adding a counterrotating flow of the appropriate strength to (4). We have obtained
the solut:on for the purely counterrotatirg case using the method of matched asymptotic
expansions and will discuss it in (17].

4.Stirring Protocols

In this section we focus on the time-periodic flows generated in the two-roll mill device
by two stirring protocols. In the first, the angular velocities of the rollers are modulated
continuously and periodically in iime such that at every instant in time their magnitudes
are equal, €(t) = Qla(t). In the second, the angular velocities are again modulated
continuously and periodically but now such that they are out of phase. See figure 3.

For both protocols we require that the saddle stagnation point be present at all times
during the modulation in order to use the results of (4.5,6,7,19]. This is equivalent to

requiring that the streamline pattern for every value of the parameter A = g-: taken on

during the modulation must have a saddle stagnation point on the line of centers between
the two rollers. It means that the anguiar velocities must maintain the same sign as they
have initially. We also require of both protocols that the modulation is done slowly and

3
coutinuously so that one stays in the Stokes' limit of -@{ = %-2‘}))- € 1, where ) = 3‘-—‘2&1‘-

the average of the angular velocities of the two rollers, R = L = RRg, the radii of the left
and right rollers, and D is the distance hetween the centers of the rollers.
Figure 3.
First and Second Stirring Protocols

We will use (4) when studying the time-periodic flow generated by the first stirring
protocol because 2.7t} = Qg(t) for all t. The streamfunction valid for the general coro-
tating case will be used in studying the flow generated by the second protocol.

Igor both protocols, Smale horseshoe chaos is present and the dynamics of the flow in
the mixing zone is governed by the homoclinic tangles. In the next section we will discuss
the rich dynamics of these time periodic lows. We emphasize here that one will not see a

sequence of smooth stagnation streamlines, one corresponding to each value of %’; taken
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on during the modulation. Even if one did not know anything about dynamical systems
theory one could predict this result from the imcompressibility of the fluid.

5.Geometry of the Time-Periodic Flow

In this section we describe the wealth of new behavior fourd when the angular veloc-
ities of the rollers undergo large amplitude. slow and periodic in timne modulations - -
both of the stirring protocols discussed above. The main result is that a mixing -
created in which ciaotic advection occurs, large scale structures arise, and stretc..
line elements is exponential.

The application of either of our two stirring protocols causes the stagnation streamlines
to break. The stable and unstable manifolds of the hyperbolic orbit intersect each other
as shown in figure 4 and forin homoclinic tangles and Smale horseshoes {4,5,19)].

Periodicity allows us to simplify the t. .nsport analysis via the use of a Poincare map.
T. The Poincars map associates points from D with their first return to D, where D is
the two-dimensional fluid domain. Tha is T : (=(t), y(t)) — (z(t + r),y(t + r)) for every
(z.y) € D. We remark that the perod of the modulation. r, is proportionai to + where
¢ is the frequency of the modulation. Thus as ¢ —= 0 7 — o0 and the simulation of these
systems, both experimental and numerical, becomes more and more time consuming.

On the domain of the Poincare map the pieces of the broken stagnation streamlines
form homoclinic tangles. These broken stagnation streamlines are the unstable manifolds
of the saddle point in the fluid and from a fluid mechanical point of view are streaklines.
The saddle point also has stable manifolds (these one can see gy simply reversing the flow).
Together the stable and unstable manifolds of the saddle point form the homoclinic tangles
that are the backbone ot the main mixing zone. We describe the mixing process in detail
below in discussing figure 6.

On the Poincare section shown in figure 4. four distinct regions, defined by pieces of
the stable and unstable manifolds of theF hvperbolic fixed point present themselves.

igure 4
Domain of Poincare Map for Second Praotocol
Mixing Zone is Region III.

The :wo annular regions, [ and 1. adjacent to the rollers, corresponu to the area bounded
by Arnold tori {14,12] these are the tori which persist under the modulation just as the so-
called INAM ton are the tori which persist nuder small-amplitude periadic perturbations




of autonomous Hamiltonians. The flow appears to be smooth in most of these reginons
except for in the rusonrace bands maunifested experimentally by so-called isiand chains.
Chaotic advection is also asscciated w.th these resonance bands. They are located near
the broken separatrix because the periodic orbits whose period is at least as large as that
of the moduiaticn lie near the separatrix. Fluid in regions | and II cannot escape by
advec:ion but only by the much slower process of molecular diffusion. Since the time scale
for d:ffusion :s much longer than that of the chaotic advection. the fluid in these two regions
1s cailed trapped Arnoid tor also exist in region [II adjacent to the container wails. Thus.
reg:on [II :s also a region in which fluid is trapped.

Firally. region [V, the region complementary to the other three. is the r.ain mixing
region. [ts backbone is the homoclinic tangle. T .is is the region. besides the :siand chains.
in which particle paths are chaotic. in which muxing occurs. and in which material lLines
stretch exponentially. We present results about its size and the rate of transport of fluid
in this region in the last section of thi: paper. Region IV has been enlarged tor clarity in
figure 4. The region will be narrower than shown. and the lobes, defined shortly, shown
will be narrower and longer than is shown {6]. The region can be split into three parts
corresponding to the parts inside and outside of the solid black lines which are also called
pseudo-separatrices.

We define a lobe as follows. Let .\ denote the saddle point in the flow and TW¢(.¢;
anc 1V X)) one branch of each of its stable and unstable manifolds. For definiteness, we
take the branches emanating to the right of the saddle point, though the concept applies
equally “vell to the branches emanating to the left. Let P denote a poiat of intersection of
WX and WYY and WP and WU P denote the segments ot WS(X) and WY (Y),
respectively, connecting P and .X. We say that P is a primary intersection point (pip) if
1V P and VY P intersect only in P. Now take two pips, P and @, such that there are no
other pips on the segments of W 5(.X) and 1Y (.X) connecting them. The region bounded
by the pieces of W5(X) and V¥ (X) connecting P and Q is defined as a lobe. See figure

3.
Figure 5. A Lobe

Now we discuss the mixing in these flows and the mechanism underlying it. One will
ses fluid particles transported beiween distinct regions defined by pieces of these broken
sireamlines. In addition tracer line elements in the fluid will stretch exponentially.

Tte sequence of pictures in figure 6 shows how an initial distribution of tracer particles
avolves after the first two periods of the modul.cicn.

Figure 6.
Evolution of Tracer Particles
Illustrating Transport of Lobes
A. Poincare map with initial distribution of tracer. B. Poincare map after one period. C.
Poincars map after two periods.

In each period of the modulation a lobe of fluid ieaves region III1 and enters regica [I12 and
vice versa. The same is happening between regions 111 and III3, not shown in figure 6. (Ve
remark that the system can be said to have a turnstile (18] and the two lobes of fluid which
change regions in one period of the modulation are referred t¢ as turnstile lobes). The
picture gets more complicated after each subsequent period. Note that incompressibility
guarantees that equal amounts of fluid enter and leave the regions bounded by pseudo-
separacrices in each period. Thus the homoclinic tangle is the backbone of the mixing
zone, and the lobe dvnamics associated to the tangle governs the fluid motion there.



Quantitative measurements of :ranspor: and stretching in region IV can now be made
given quantitative knowledge of thie loucs. ard we discuss this in detail in the next section.
As we remarked before adiapatic dynamica, system theory [4.5.6,19) is ideally suited to
systems in which the flow field undergoes Or 1) amplitude changes. Finally we remark that
the prob.em :s noruntegrable 4.53.191 and. in tie absence of molecular difusion, reversible.

Before concluding this section. we discuss a second approach based on the adiabatic
switching metnod that we are taking 'o arrive at these quantitative ineasurements. The
adiabatic switca:ng method represents 4 gy developed appreximation scheme to deter-
mine whether or not a parzicle crosses rue nseudo-separatrix dunng any given period of
:ne modulation This is akin to the roie the wiusxer or separatrix map :13] plays for vector
Zeids which are time-dependent small ainputide perturbations of autonomous Hamilte .1-
ans. The adiabatic switching method lias ot been appiied in the context of low Revnolds
number Swd mechanics and represents a poteatiaily powerful tool to measure the trahsport
quantities we seek. Furthermore. resuits from this method have not been compared with
results obtained from an exact dynamics-based technique such as the one we are using in
the principal part of our study.

8.Results from Applying Adiabatic Tools

In this final section we state our results for the areas of the mixing zone and of a lobe
and a.so the give the basic formulas to be used in studying the transport in the mixing
region.

The size of the main mixing zone under the first protocol is given to a certain orde-
of approxunation by the arca between the munimum and maximum frozen separatr
112.13.6!. 4,. See figure 7. In addition the area of a iobe in (2) is given to leading orcer
by A, 6]

Frozen separatrices can be understood as follows. For any instantaneous value of the
angular velocities of the rollers one has a coriesponding steady state flow pattern. This
flow field has a stagnation streamline which is called a frozen separatrix. \We emphasize
that frozen separatrices are never realized by the fow of (2) because the periodic mod-
ulation of the roller angular velocities brezks the stagnation streamline. Instead frozen
separatrices serve merely as a convenient fiction for aiding in determining the area of the
mixing zone and that of a lobe. In particuiar. during the modulation, the sequence of
areas enclosed by frozen separatrices. one area for each instantaneous steady state flow
pattern. 1s an alternatingly expanding and contracting sequence. Thus the area enclosed
bv the frozen separatrix oscillates between a minimum and maximum area (12.13.6]. The
difference between the minimum,and maximum areas i3 exactly 4,. We remark that frozen
separatrices are distinct from the pseudo-separatrices formed by pieres of the stable and
unstable manfolds.

Figure 7.Frozen Separatrices for First Protocol

The shaded area shown in figure 7 is then the area between the minimum and maximum
frozen separatrices and to leading order gives the area of the mixing zone [6]. This result
1s valid to O(e) and thus gives a good approxunation to the area of the mixing zore for
slowly modulated flows.

Under the second protocol the area of the main mixing zone can also be determined
to leading order from two frozen separatrices. The area can be obtained directly from the
shaded region in figure 8. We refer the reader to (6].

Figure 8.
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Frozen Separatrices for Second Protocol

To odbtamn quant:tative information about the lobes for both protocols. we .ely pri-
marily on the adiabatic Melnikov function 4.3.6.101. It is givea by

L[ 0V O OV W,
.o\ = #

A S = P e —  —— e ,\{ -
Jone "0z dyoA dy aral\.(qc\t))dt.(o)

where g3 t) represents the separatnx for the system with the parameter A fixed at A = g—%

L4 A iso up to a normalization. the first terin of the Taylor expansion of the distance
between :he stable and unstable man:foids of the hyperbolic orbit as a function of the
ume of cight along the separatrix of the stzady state flow. Integrating it between two
zeroes. wilch correspond to intesection poiuts of those manifolds, gives the area of a lobe
61 and thils quantity is equal t~ leading order to 4, 6]. We remark here that _his result
cannot ve proven directly irom the Poiuncare map of the Sow but inscead relies entirely
on the connection betwean the theory of action in classical mechaaics and the adiabatic
Mel'nixov theory 6.

Now we mention only one of the transport formulas we need. Given an initially
uruform distribution of tracer fluid in region 1. the amount of fluid which leaves this region
after n periods is given by

an =u(Dl2)—S::g-lu(pnﬂT“Elz). 1 6)

where u gives the area of the lobe {10,11]. The lobes £'2, D% .. are marked in figure 6.
This formula only requires knowledge of the intersections of all forward iterates of one of
the two turnstiie lobes with the second turnstile lobe. This is simplifies the numerical work
except that one must still integrate over long time intervals because the return time of the
Poincare map 1s proportional to 4.

We have additional formulas, given the initial distribution of tracer particles in the
fluid, to determine the amount of tracer flud in each of the three regions after the first
several periods {10.11]. Furthermare. we have extended these formulas so that we can
compute the rates of multiple region changes. For example, if some of the tracer fluid
inutially in region 1 flows into region 2 during the k-th period, we can compute the amount
of it which will reenter region 1 during the (& + n)-th period for aay n. These are based
in part on the same simplifying idea used in the derivation of formulas such as (6) and a
detailed understanding of Birkhoff signatures.

Finally, we remark that using the results from the above transport computations we
can estadblish residence time distributions for each of the regions, or even of subregions.
in the fow. This entails obtaining statistics from the above transport calculations and
deterimining the amount of tracer fliid in a given region « . a function of time.

7. Conclusion

\We have presented the outline of our transport, mixing, ard stretching study in chaotic
Stol:es’ flows which is based on the structures found in these flows and on the ideas of
adiabatic dynamical systems. We have given analytic formulas for the area of the mixing
zone, for the area of a lobe, and for the evolution of a given distribution of tracer particles.
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We now make a few comments about extension of our results. The technique behind
our mixing zone size result 1s valid for continuous, periodic stirring protocols other than
the ones we study [6].

In particular suppose onc takes a sequence of protocols, for each of which Q; and Qp
are 180 degrees out of phase, which limit on a square wave (here we are not concerned
about maintaining the quasisteady approximation). For each continuous protocol in this
sequence. our technique gives the size of the mixing zone in the flow. Thus. we have a
sequence of mixing zone sizes.

Now the limit of our protocol sequence is called the blinking or alternating protocol.
Thus the question arises as to whether the limit obtained above is the area of the mixing
zone in the blinking two-roll mill. Blinking protocols have been studied in several flows,
however the area of mixed fluid has only been determined numerically. The present idea
may vield an analytical result. In general the relationship between continuous protocols
and discontinuous ones deserves further exploration. certainly since a blinking type protocol
is easier to achieve experimentally.

A.cknowledgement T.I\. would like to thank Dr.L.G.Leal for his guidance and inspiration
during the process of finding the streamfunctions for both the corotating and counterro-
tag‘is Rtwo-roll mill. One of us. T.IX.. acknowledges partial financial support from the
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Figure 43 Evolution of an initial ditribution of tracer particles.
The mechanism for transport is the lobe dynamics of the
homoclinic tangle.
A shows the initial distribution.
B shows the Poincare map one pericd of the flow later
C shows the Poincare map after two periods of the evolution.
After each period one sees that a lobe of fluid leaves region IIIA
and enters region IIIC and vice versa.
The same is happening between regions IIIA and IIIB.
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Turbulence effects during evaporation of drops in

clusters

J BELLAN and K HARSTAD

Jet Propuision Laboratory. Califortua Insutute ot Technology. 4800 Oak Grove Drive,
Puasadend. CAJLIOY L S A

' Receited 9 June 1987 und 1n nnai form 22 Januars 1988)

Abstract— A —ocel o) droplet evaporation in clusters and the exchange processes between the cluster and
‘ne gas padse ~urrounding it are presented This model 1s deseloped for use 4s a4 >ubs gle model in
4 u.dllons o sprav evaporation and combustion and thus describes only global features of Ciuster
Aehavior The gds pressure 1n the cluster remains constant dunng ¢evaporation und as 4 result the volume
of re Sluster and the arop number density inside the cluster vary Two turbulence models are cunsidered
The nrst one describes cluster evdaporahion in surroundings imudily devoid of turbulence and turbulence
15 a.lowed to buiid up with ume The second model describes cluster evaporation in surroundings where
turbutence is present imitiaily The results obtained with these models show that turbulence enhances
svaporation and 1s o controlling factor in the evaporation of verv dense clusters 2xamples are shown
anere with the nrst turbulence model saturation wds ot*dined before complete evaporation whereds the
~pposite way obtained with the second turbulence modei As the ininal air fuel mass ratio increases. both
urbufence history 2nd the imual refative velocity hetween drops and gdses can control evaporation {t s
“rown that the evaporation time decredses with an intial increase in turbulence levels or relative velocity
W hen the initian aie fuel mass ratio increases further und the initial drop number density falls within the
Jilute reqime. nerther of the above parameters can control evaporation Moreover, the evaporation ime
Jecredses witn the decreasing size of the cluster tor dense clusters ot drops. whereas for dilute clusters of

Jrops the >12¢ 1s not a controlling tfactor The practicai implications of these resulrs are discussed.

1. INTRODUCTION

THE MATHEMATICAL tormulation of spray combuston
is extremely complicated due not only to the great
number of phenomena to be described but also due
to the fact that the space scales involved in these
phenomena are vastly different. For example. a tew
ot the most obvious scales are the scale of the com-
bustor itself. the many turbulent scales associated with
turbulence build up and decay. the scale of droplet
tnteractions and the scale of the drops themselves.
These scales vary by many orders of magnitude from
the largest one to the smallest one and thus it 1s obvi-
ous that an accurate mathematcal descnption at all
scales 1s impractical. Instead. a sound approach 1s to
describe 1n detail the macroscale where many of the
phenomena of interest to engineers involved in the
design of combustors occur. and to associate and
couple to this descrniption that of phenomena occur-
ring at scales much smaller than those of immed:ate
interest This second part of the formulation 1s called
4 subscale or subgnd model because the phenomena
to be described occur at a scale much smaller than
that of the grid size used to computationally solve the
macroscale problem. By the very nature of this two-
level formulation, the subscale models are more
approximate than the macroscale models and lack the
detadl that the latter one must have in order to be
uselul.

The work descnbed here pertains to a subscale
mode! to be ased for the descniption of spray evap-
oration in a combustor. Within the frame of this
approximation 1t 1s ntended that the gas phase in
the combustor be described by the solution of the

macroscdle equations at <ertain gnd potnts. this 1s an
Culerian approach In contrast. the sprav 1> par-
tuoned nto clusters of drops that have a size smaller
than that of the grid. and each cluster s tollowed n
1ts trajectory. this 1s o4 Lagrangian approacn The
coupling between the two formulauons is achieved
through the transfer of mass. species and heat to and
from the cluster The partition of the spray into clus-
ters as explained above 1s not an artifact because it ts
corroborated by experimental evidence (!].

What 1s described below 1s only the subgnd model
uncoupled (rom the macroscale tormulation. Thus
means that the properties of the gas phase sur-
rounding the cluster of drops are assumed known, and
what 1s of interest to descnbe. solve for and analvze
15 the behavior of a cluster of drops 1n this given
environment.

2. MODEL FORMULATION

Figure | shows the situation under consideration.
A monodisperse collection of uniformly distnbuted
droplets of a single-<component volatile compound
ts immersed nto gases at a higher temperature and
exposed 1o a convective flow. As a result. heaung of
the drops and evaporation occurs. At each instant of
ume the envelope of the cluster of particles s called
the surface of the cluster. The volume enclosed by the
surface 1s calied the cluster volume. 1t contains both
drops and gas. Since the pressure 1s maintained con-
stant duning this process. the volume of the cluster
will change with ume.

The point of departure of the present model is the
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NOMENCLATURE

transverse area of the cluster {cm®)
cross-sectional area of a drop [cm?)
radius of the sphere of influence [cm]
-m (dntp,D)* R”)

specific hea® at constant pressure

ftaig K

fitted C,,— C., for the saturation pressure
curve [calg”™ K™')

constant

diffusivity [ems ™ |

rate of enthalpy transfer, equation (19)
rates of enthalpy transfer for turbulence
models | and 2 (; = 1 and 2),
equatons (22) and (25)

enthalpy (cal}

spectfic enthalpy [calg ')

enthalpy of the gases at T, [calg™']
enthalpy of the iquid at T [calg™')
latent heat of’ evaporation [calg™']
Lewis number

turbulent lengrh scale [cm)

rate of mass transfer, equation (21)
rate of species « transfer. equation (20)
rate ot species / transfer for turbulent
models | and 2 (; = 1 and 2),
equations (23) and (26)

evaporation rate. —(1,V)dm, dr (gs™')
mass of alt drops in the cluster [g)
mass of fuel vapor [g]

mass of gases inside the cluster (g}
inps R o

m m

totai number of drops

drop number density [cm ~’)

Nusselt number

~ressure [atm)

Prandtl number .

2Ru, v§

2 A (uy,uq )= "‘4/":

universal gas constant

[atmem’ mol~'K~')

universal gas constant [caimol~' K ™'}
radius of the cluster [cm]

RIR®

RR®

drop radius [cm]

temperature (K]

RO" ‘D=

Lo Cpy

¥

"wie g

time (s)

radial coordinate centered at a drop's
center [cm]

radial coordinate centered at the cluster's
center {cm]

a.: Ro

Sherwood number

velocity {ems ')

volume of the cluster {cm’]

radial gas velocity inside the sphere of
influence {cms-')

‘trapping factor’, equation (1)
molecular weight {g mol~")

r R®

rR.

Greek symbols

1 constant for the Langmuir-Knudsen
evaporation law, 4n
! Wg Wi
r genenc function represenung 8 or ¥
€ evaporation efficiency. equation (29)
6 CyyT'Lya
i conductuvity [calem~'s 'K "']
u viscosity {gem~'s”'|
v kinematic viscosity, w/p {cms~']
p density {gem~’)
g P! Pt
Pt PWeCo (RILyn)
a -y
T l f,'f.
Subscripts
a at the edge of the sphere of influence
ag ambient gas
bn  normal boiling point
c cluster
ch charactenistic value
d drop
Fv  fuel vapor
8 8as
! liqud
r relative
s drop surface.
Superscnipts
b wn the (ar field of the external gas phase
0 initial value
f final: either when R, = 0 04 or when

evaporation stopped.

_
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716 1 Sketch of the pnvsical situdtion modeted

model of convective drop evaporation given by ref
(21 [n that model the cluster of drops was adia-
batically insulated trom the surroundings ang the
drops were moving together as 4 rigid entity through
the low As a result. the gas pressure inside the cluster
varied dunng evaporation In contrast. in the present
model there 1s mass and energy exchange across the
surface of the cluster and drops move with respect to
¢ach vther [f they move away {rom each other. then
expansion occurs. if they move towards each other
than contraction occurs Thus. in this new configur-
atuion the drop number density becomes a depsndent
vanable whereas the pressure becomes a constant.
The main assumptions regarding the liquid and gas
phases have been described in detaii eisewhere (3] and
thus will not be discussed h-re. Simular to the siudy
of ref. [3]. in the present study each drop is considered
surrounded by a sphere of influence the radius. a, of
which 1s the half distance between the centers of two
adjacent drops The ensemble of these spneres of
influence and the space between them consututes the
cluster volume. However, whereas in ref. (2] the value
of the radius of the sphere of influence was a constant,
here 1t 1s a vanable with ume. Moreover. following a
previous study [2]. the present formulation has three
components (a) the descnption of miss. species and
enthalpy conservation inside the sphere of influence
of each dropiet; (b) the description of mass. species
and enthalpy conservauon in the cluster volume; and
(c) the descnpuon of convective effects using differ-
ential equations expressing momentum conservation
for the gases and the drops. The present descniption of
convective effectsis unchanged from ref. (2]. However,
since the assumption of constant gas density inside
each sphere ot influence (3) 1s no longer valid, the
solution of the convecuve diffusive equations inside
each sphere of influence changes from its simple
expression (4] to

o dy

= - . £ e — l
Fa=C, C.cxp{((p.m ! (p,D)r] th

HNT J1:0-#

where C, and C; are integration consizits Now since
Leg = 1. p D = u, Prand using the classical expression

H ’“:nt’:” (2)

with the assumption Pr = 08 one obtains the fol-
lowing solution for ¢,

". dh

RS

where C., and C., are funcuons ot H, and *,, Since
following the Schvab-Zeidovich approach ¥ s a
linear function of ¥ once * 15 known ~0 ire the
vanous F'sintermsof s . Y and ¥,

The denvauon of equauons (1i-t3) 15 the onlv
novelty here in the treatment of the consers ation laws
inside the spher~ of influence when compared with the
tormulauon of ref [2] Both boundary conditions and
evaporation law at the surface ot the dgrops are tne
same asin ref [2] Moreover. the energy consersation
tor the hquid drops is also the same as in ret (2]
in that 1t considers the liquid temperature 4s being
transient and a function of the radial position

Note that the nght-hand side of equation 13) 15
not analvucally integrable and ¢( 1) can no longer be
simply expressed as a function of v asn ret” [4] This
1s due to the relaxation of the assumption that ,,D 15
a constant. With this new formulation the equations
must be solved numencally. unless some approxi-
mation 1s made i1n order to evaluate

Heth) = C,.-C;,cxp[(‘m“

‘r
d
Zoy =05 |

-

t4)

el
» U‘

A conventent way to evaluate Z( 1) 1s (0 use the weak
evaporation, constant viscosity limit solution

B, = 8, +6,R, ($)

and to perform the integrauon analyucally This
approximation preserves both the concavity of the
actual temperature and its boundary values at 7 = R,
and R. and therefore 1s expected to fit well within the
present model which takes a qualitative approach to
modeling rather *han a quantitauve approach This
approximation 1s also used elsewhere (5] The quah
tauive approach used here 1s specifically concerned
with global effects and does not attempt to descnbe
accurately spacial dependence of the dependent van-
ables. Moreover. the present tormulation s quali-
tatively accurate only when the total number of drops.
V. 1s much larger than unity.

To complete the descnpuon of this tormuiation.
the following is discussed below - (1} transfer of mass.
species and enthaipy (rom the clusier 1o the external
gas phase. (2) (ne benavior of the external gas phase
and transport of mass. species and enthalpy to the
cluster. and (3) the conservation equations tor the
enuire cluster.
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(1) Transfer from the cluster to the external gas
phase

The challenge here 15 10 describe 1n a simple way
the mass. species and energy transfer from a clus:er
with 2 moving boundary using a model that Joes
not discriminate between the vanous drops and
therr associated surrounding gas phase in the *-
Jirection talthough ronuniformities 1n r are taken
Into account)

The gtobal unsready conunuity equation inside the
sphere ot artuence veids

-
P .

M . . .dR
Zidnf opridr [ =4aRp 4R —py,
e Jdt

gl
. .da
—dnacip), =4nas —p,  (6)
dt
Since \dR dt| « (vl
4 F4 ' » .
— |4 redel=m=m,
er Ja J¢ !
where
da
Mgy = 3MA7 | (PL), ~ P I {8}
Two physical limits can occur
1a) The stnctly steady situation where
4R (p,r), = dma*ip,r), (9

and according to equation {8) one obtains

.da
Mgy = Mm~dnag” 3 Pe

d

[n this himit maximum new vapor passes ihrough the
sphere of influence and escapes to ambient Then

{10}

N m
i), 8 —.
i, 4"0'0' X

tb) The himit where all new vapor is trapped into

the sphere of influence as its surface moves. Then
my, =0 inn

and ’

da )
(t)e by (1)

The physical reality is somewhat in between these two
himits We thus define a "trapping factor’

Wam (m +m,) (13)
and model
(), = (1= W) —— 4 w32 (14)
ira‘p, dt

Thus this expression gives the velocity of the gases at
the edge of the sphere of  “Yuence in the general case
and also sausfies the above two limits because " (1) 1n
the dilute limit my <« mg and # = 1. (1) in the stroug

evaporation. stnctly steady. | it W -0 becuuse
m, oMy

Since tn this model there is no distinction between
the surtace of the cluster and surface of the spheres of
nfluence the mass and enthaipy ioss from the ctuster
arz respectively Vm,,, and ¥m, 4, The effect ot the
convective fow on drop 3vaporation Is contained in
m which 1s the solution of the purely diffusive evap-
oration case muitiphed by a corrective tactor us
described in ref (2]

i12) The behatior ot the qus ~huse external 11 the
luster and transpor’ (v (he (iuster

In order to be consistent with the treatment ot Lon-
vective drop e-aporation of ret’ [2]. which 15 sull pre
served here, where convective etfects are considered
as a correction to diffusive evaporation. the cxternai
gas phase is first considered to have a purely diffusive
behavior and ¥ and 4 satisiy

.dr
Fo—
4r

tH

' d
i _;( ) =0
The solution of this equation 1s

R
rmaqr,~r,':;-r'

t16)
assuming continuity for " at 7 = R Thus
, 40 - ! -
~74 d;|i’)' (U‘ —”"]ﬁ B A
Lar o ,
—QCD E’Ti,"p'o (B -)‘)R\- iy

Similarly to the descnption of convective etfects ot
ref [2]. these are seen as a contnbution both rrom the
individual droplet and the enure (luster

The contribution to heat transter trom the ndi-
vidual drops s due to the cluster ‘porosity’ Consistent
with the present homogeneous description for the
cluster in the F-direction this contnbution tor heat.
spzcies and maas 1s modeled as

t19)
120y

120

E, = (p) hf ~puhyud,
M, =i Y =puY u A,
Y = (pf —pglud.

The heat transfer to the enuir: cluster 1s highly
depvndent pon turbulent transter between the sur-
roundings and the cluster. Because of this. it 1= very
important to understand how the history ol tur-
bulence with respect to :hat ol evaporation influences
the behavior of the cluster. For this reason, two tur-
bulence models are considered and :ompared here
Since 1n our calculations the coordinate system s fixed
with the state of the gases at { = 0. uy = 0 and thusn
the first model the drops do not act imuially as an
entity, but rather as individuals and turbulence builds
up with ume if the cluster ‘porosity’ diminishes sig-
nificantly In this model the rate of heat und >pecies
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transfer integrated over the enuire surface of the
cluster s

/" Ug = o0 .
E. =4nc—[_5ﬂ ,\u:&— RIBS =H,) 2
b 3

M. o=dmip, D) SR ERYE<-Y,) (2
L]
L nder the assumption of similanty betwsen heat and
mass transter S4. = Vu [n the computations further
presentec nerg ine vdalue ol Vu was taken to be that
‘or dow, ground 1 spnere up through the turbulent
range (€]

Vu =1 =019Pr R C 24y

where Re 1s based upon the length scale [ 4.(u, uy) <]*’
and veloaity w, {2} The quanuty 4 (ug u,) 1s an
effective cluster area which was found to be m-
portant n Jetermnung the drag due to the surface
force on the cluster as 4 resuit of 1its motion through
the gas {2) The ratio u, uy i in fact equal to the non-
ship Jdisplacement gas How divided by the total gas
flux

The second turbuience model used here 1s diferent
from the first one in that the turbulent part of the
Nusselt number 1s changed in such a manner as to be
consistent with the cluster surroundings being initially
turbuient This is done by making the turbulent con-
tribution of Vu. proportional to u, rather than 4, In
this second formulation

" c .
Eri=min ™ L[ - 1P Rey |ROF ~6,)
. u, 2

s

c
ML= dnip, 01 (2~ =L PrRes |R(YT Y ,)
g - /

(26)
where
Rey = 2p, Ruy u? (27)
Cr=ir R (28)
and Cr s a constant ’

(3} The conservation equations for the entire cluster
Under the quasi-steady assumption these equations
are as follows.

(a) Conservation of total mass of liquid fuel. This
states that the mass of liquid fuel at ime ¢ 1s equal to
the 1nitial fuel mass minus the mass evaporated from
the drops. Once nondimensionalized the equation
becomes

gal-R.). (29)

{b) Conservation of toral gaseous mass inside the
cluster. The gaseous mass at time ¢ 1s the sum of the
imitial gas mass. the mass evaporated from the fuel.
ard the mass entering the cluster of drops minus the

mass loss from the ciuster to the surroundings. This
15 expressed as

dﬁ_ Vi vV, < b
T M= NPy + (P~ P Ve A, £10)

where

. A.' . [ inag’
my = v ,, 4nr'p'w)dr - ( | - A )p" (RAN!

and m.,, 15 given by equations (8) and 114 To cal-
culate the density integral. the equaton ol state s
invoked to obtain

4 z “n :
R pacC. L3
' Delrirdr = .r, t RO - RN
R R‘ Lonn A ']‘lO‘Y.." }
where
Ve« ¥, =1 R

was used The form of equation 13!} becomes
iniegrable when 8, 1s given by the apprcumauon of
equation (5) and Y, 1s obtained 1n a similar way
In this manner m, can be approximated v an ana-
[vtic. non-hnear function G

me =GR, R .79, 00 Ve Vi) 134)

2y Consenation of fuel .apor mass .nside the
luster The time change of fuel vapor mass inside the
cluster ts due to mass addition from the evaporated
drops. mass additton from f(uei transported from the
exiernal gas phase to the cluster and mass depletion
due to fuel escaping from the cluster (o the external
gas phase This is expressed by

dme, , .
TR Net+Me, - My —Nm Yo, 39
where
l“ . / 4'0)
me, = N | p,Yednridr + (V -5 V)ogYen
d‘ .

136)

and m,,,, Ve, and My, are given. respectively. by
equaticns (8). (14), (20), and (23) or (26). Now

-~

B

. pweRY'C,, J." VY, dy
n

Y.ridr=
P p. T r R:L” . 8.(6},;.*'/')

v

and using again the approximation of equation (5!
we can approximate mg, by an analytic. non-linear
function £

me, = F(R), R,,ﬂ.e-. 6'- Yan YFu) ‘38)

{d) Conservation of total enthalpy inside the cluster
The change of (otal enthalpy inside tne cluster 1s due
to enthalpy being transferred from the external gas
phase to the cluster and e~ halpy escaping with the
gaseous outflow from - cluster. In all the cal-
culations made here 1t was issumed that imually the
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temperature of the external gas phase 1s much higher
than that of the gases inside the cluster so that heat
conducuon from the gases inside the cluster (o the
external gas phase is exciuded Thus the enthaipy
squation 1s

dH .
—-=£& -£ -\m 1, 139
dr
sperz B o £ -2 -espectivels aiven by equa-
ons sy 4 2 I o 28 and
- .
H=N| d=reodr= N dar o 2r

F

4=y
- b - R CWORERE]
w1th
ro=n - ‘IT‘—I',C,; )
c=a =C T =T 142
L=h —-n 143
Wirh the above defnitions A becomes
TR N
H = \‘94-:! T'z“—C,, ) lT—-T,.i"dr:,

- - v

r E S
-4y ! h - Coyle) l pridr+C,, " r'T.p‘dr]

47a o
e JAY = C Ty =T Jp 139)

The nArst integral in equauon (44) can be easily per-
rormed since. 4s 1t will be explained in the next section,
Tiry 15 soived as a senes solution from the energy
consersation equaton inside each drop. and the two
fast imegrais in equdtion (44) are calculated using the
approximation previously descnbedato calculate (1)
from equation (3) Thus. one approximates 4 by an
analvtic. non-hnear function

H = X(R;.R..n.t)“.t)‘,. yF... Y,,,). 145)
One can ehminate 7 as a dependent vanable from

the above equation by noting tnat for tightly packed
spheres (7]

R}
74—
n=0 dra’

(46)

Thus the dependent vanables which are the
unknowns in this problem are & R, R,. 0, 8,,, Ve,
Ye.oo C. u.. 4, The equations which are solved to find
the solution lor these ten variables are given in non-
dimensional form in the Appendix
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3 NUMERICAL PROCEDURES

The integrated drop energy equation is
4 h ;
“Hamod nr‘d')s-l't.’?":, T

J¢ B or "

- mh,

-

47
The temperature distnbution Tiry in the Jrop 15
obtained bv sotution of the drop neat conduction
equation by means of expanston in 4 small parameter
mversely proportional to + [3] Thiy resuits :n ‘he
tormation ot two differenual cquations in ume ror
runctional parameters. ahich 10 conjunc'en ALn che
surface gradient expression 1A7) n the Appenaiy
Jdetermine the temperature distribution  *ne pur-
tculars are given in ret’ [} The above equation
combined with the global energy cquation cguation
1391, 1o obtain an enthalpy equation tor the 215 phase
d 4= ]

:-‘ 'J:Rll ‘)‘t"\h-‘ b~ \i-l \ ’t'a.". !
IR )

-

", -"._U\D'C7‘R H] £
= \m -
L l—expiC2ZIR 1, Lo

-y, i)" "U_,”."“-“ - \”“'Pl . 45

where the funcuion /i 1s 2ven by cquation (A})

Since there is a linear relauonship between the t s
ind temperature. equations (30). ¢3$) and 139) gre
not independent The tnilowing hoids

Y 8= = Ve = Vo d =i, = b

ra g
149

Variables and determining equations sre s [ol-
lows #,, (or #,) s obtained {rom the drop heat con-
duction equation. m, from equation 130) /itrom equa-
non 481 Yo and Y, from equanions 1491 and 1 A%)
C trom equation (AS). R. {rom equation (A6},
from ¢quation (A9} and . from equation 1A10)
Both m, and A are known functions of the dependent
varables. m, (or tunction ¢) 1s considered 4s Jeter-
mining . and h determines R. (These funcuions vary
most strongly with this particular vanable selection )
The vanables C. Ye... Ye,,. R. and 1, are gdverned
by a non-linear set of algebraic equations . the other
varables ure determined directly from different.al
¢qudlions

Eliminaung Y., from equations (49) and (A8)
resuits 1n an equation relating Y., 10 C The evap-
oration equation, equation tAS). also relates these
1wo vanabies. These two equations dare iterated in
an inner loop for the vanables. considenng all other
vanables fixed. In an outer loop. lunctions ¢ and #
areiterated for R, and 8, This nested loop procedure
allows tor a relatively efficient solution of the algebraic
equations at each ume step of the differential equation
integration. The differential equations are integrated
using a standard ODE integrator. GEAR. with a local
error tolerance of (0°*

The model equations depend on terms proportional
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10 dR. dr Since R, is formed algebraically. this
Jenvauve needs (o be estimated. The procedure for
calculaung this denvauve is as follows Define

=0
-’r*m)" 4

"Ny 5 ne _~a-own o0 equation 4% On the other
=ang ¢ = R J wnere Jos i ceiatively weak varving
o TRy
<R - AN
R = - R J

Angre 2o

o8 anown ana &/ 38 s approumated by
1T rgeorder Sueawars annte Sifference

4 RESULTS AND DISCUSSION

The results orosented nelow were obtained from
Ldcuwiations gertormed Cor aguid a-decane Jdrops
saperanng nompady ansetated wir The thermo-
ANvsIcdt vomstanhy for o-decane that were used here
Jre *he same as ihose of rel 73] The interest here s
21 now turbylence can affect evaporation of drops in

.lusters and 1he behav,or of the cluster as an entity
Figure 2 shows 4 non-dimensionai evaporation ime
.5 the rminal air fuel mass rano for three situations.
The baseline case 1s that of the first turbulence model
angd u- = 300 cm <~ The two cases are chosen such
15 to study the nfuence upon evaporauon of both
the ‘mual rejative veroc:ty and the turbulence history.
The picts show that in the very dense spray requme
the imntal retative velocity 15 not a good control par-
ameter However. »v changing the history of tur-
suience wit® respect to that of evaporauon, one can
obtain now complete evaporation in situations where
the gases in the cluster saturated before complete
evaporation when the other turbulence model was
used The reason for this s that as the drops heat up,
the gases cool off . if' the exchange of mass and heat
between the cluster and the surroundings is poor. the
gases in the cluster will saturate and the drops will
eventually be at the same temperature as the gases
thereby stopping evaporation. On the other hand if
{resh gases and ¢energy can be brought inside the clus-
ter from the surroundings. evaporation will proceed.
These processes are most important dunng the initial
part of evaporation, when the rate of mass loss from
the drop 1s lugh. If turbulence 1s not present at that
ume. evaporation will eventually stop as shown by
the baseline case. an increase in the mmtial relative
velocity does not affect the outcome Since turbulence
model 2 portravs 4 case where turbulence 15 present
imally. the exchange of mass and heat between the
gases (nside and outside the cluster occurs at the
appropnale time. and evaporation can be completed.
For smaller ¢°, there 1s a regime where both the
turbulence history and u’ can control evaporation. By
ncreasing u’ one can now obtain compiste evap-
oration before saturation with the same turbulence
history by keeping u’ constant and changing the
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turbulence history one obtains the same outcome.
ho +ever. the evaporation ume s now considerably
shorter

When ¢’ increases even further. and the regime of
the shightly nch and turther that of the lean mixtures s
encountered. neither turbulence nor the initial relative
velocity are good control parameters [n fact as n’
decreases Lo a few drops-cm any one of the three
models gives exactly the >ame result and ail three
Todeis reach the same isymptote The reason for this
:y that 4s the imitial Jensity of drops in tne cluster
Jdecreases. the interstitiai gas between the drops cools
ess dunng evaporation. and mass and heat transfer
tfrom the surroundings pidys 4 Jdecreasingly important
roie In the same manner. a> the :nitial deasity of
drops in the cluster Jdecreases. the Jdrops reach the
asymptoie corresponding (o the fimit ot the convective
evaporauon of 1 drop-cm  [2]

These conclusions are substantiated by the results
plotted 1n Figs. 3-§ Depicted in Fig 3 are doth the
gas temperature drop and the gas Jdensity rise is 4
function of @’ For very lean mixtures and dilute
clusters there 1s no temperature drop since the heat
going to the drops to support evagoration is minimal
compared to the tot" | heat available in the gases of
the cluster As ¢° decreases and the regime of rich
mixtures 1s reached. a temperature drop and a cor-
responding density nise are encountered. With a lur-
ther decrease i 9° one can observe the influence of
turbulent heat transfer from the surroundings in keep-
ing the temperature at a level where 1t can support
evaporauon. In contrast. when turbulence is not pre-
sent imually and instead develops with time the tem-
perature drop 1s more substantial and eventually
reaches the point where 1t can no longer support
evaporation.

The reason that the 1nitial history of turbulence 1s
so important in controlling evaporation 1s sllustrated
in Fig. 4 Not only 1s m largest when the drops are
larger {2]. but also the loss fraction is largest initially.
By the ume R, =0 5. the loss (raction 1s negligible.
The osciliauons in m,,,, m observed ir the figure inset
may be due o the inaccurate numencal evaluation of
du d1 using a two step backward scheme. Since thexe
osctllations occur in a region where im,,, m| « |. no
further cifort has been made to tmprove the accuracy.

The loss traction accounts only for the mass lost
from the systemn as 4 result of the motion of the cluster
surface. but does not account for the gain that occurs
when mass is brought into the cluster by turbulent
transier from the surroundings. As 4 result. its value
as 4 diagnosuc 1s himited to indicating the relauve
importance of gaseous mass lost from the cluster to
gascous mass gained inside the cluster through evap-
oration. In contrast. the global mass conservation
equation for the cluster does account appropnately
for mass addition due to turbulent transport.

The vanauon of the final position of the cluster
surface with respect to its tnittal position 1s shown vs
@°1n Fig. 5. As expected. for lean mixtures and dilute
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sprays. when there 1s not much gaseous mass added
through evaporation. the cluster maintains its ongenal
size. As @° decreases the cluster shrinks in size due to
internal cooling. However. this shnnkage 1s smaller
for wurbulence model 2. as the final temperature was
also observed to be higher. This contraction 1s con-
sistent with the observed decrease 1n pressure inside
the clusier when evaporation occurred in a cluster that
was adiabatically insulated from the surroundings {2].
This pressure drop was larger with decreasing o°.
which means that despite the very large increase in
density 1n the very rich cases. the cooling effect was
dominant.

[f the mass lost from the cluster i1s integrated In
ume. converted 1nto 3 volume by dividing by o;°. and
finally nondimensionalized by the initial volume of

the cluster one finds that at fixed R, this value s larger
for smaller o and at fixed @° 1t 1s larger for turbulence
model | When this value 1s added. at ixed R.. to the
non-dimenstonalized cluster volume. one finds that
for a given ¢” the sum is larger for turbulent mode!
2. In all cases this sum s consistently smailer than
unity and increases with the value of ¢° 4pproachmg'
unity for large vaiues of ®° These results confirm the
fact that even when one accounts for the mass ¢scap-
ing from the cluster, contraction due to cooling ol the
gases occurs. With turbulence model 1 more of the
gas escapes to the surroundings and with turbulence
modet 2 less of 4 contraction occurs.

[t1s worth menuoning that the differences observed
between the behavior of the clusters when the two
turbulence models are considered 1s not due to the
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tact that the drops evaporate in different repumes {2}
(diffusive. convective-diffusive or convective) but
rather due to the differenc :xchange processes between
the clusters and their surroundings. Figure 5 illus-
trates the fact that the imuai penetration distance.
which indicates the evaporation regime (2], vanes only
with u” and 9° and not with the turbulence model. At
fixed ©°. as R, decreases the penetration ratios con-
tinue to be extremely close for the two turbulence
models.

The effect of varying the cluster size can be seen in
Fig. 6 where a non-dimensional evaporation time s
plotted vs the wnttial size of the cluster for both tur-
bulence madels. For a stoichiometnc mixture nerther
the mitial size of the cluster nor the turbulence model
influence very much the evaporation ime: however,
there 1s 4 shight tendency to a larger evaporation time

with increased iutial size. Thus effect i1s very substanual

for nch ruxtures and 1s observed for both turbulence
models. There are several reasons for this. Furst. since
u] 15 fixed. as the cluster becomes smaller. the initial
penetration ratio s larger and the drops evaporate ina
regime which changes from diffusive to predominantly
convecuive thus reducing the evaporation time This
15 liustrated 1n Fig. 7 where (L,, R)°1s plotted vs R”

In contrast, for stoichiometric mixtures (ne evap-.
oration regime 1s convective-diffusive to convective
and as 1t has been pomnted out previously {2]. con-
vectuve effects always dotnate diffusive effects thus
determining the evaporation time. Second. although
at fixed ¢°. n°1s the same for all sizes of clusters. .V
decreases with R° Ths ieads to a more pronounced
interaction with the surroundings and thus faster
evaporauion.
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The total etfect upon the final cluster size 15 pre-
sented 1n Fig. = [n all cases large. clusters contract
more. relative to therr 'mnial size, than do smaller
clusters due again to the coohing effect discussed
above. A smaller number of drops \n a cluster results
in less cooling of the gas phase «. complete evap-
oration and faster -aporation.

Simulatly 1o the discussion pertinent to Fig. 2. tur-
bulence model 2 predicts shorter evaporauc ° times
for dense clusters and the same evajoratior. ume for
dilute clusters as doe .rbulence model i. The trends
regarding R’ R° are also simular.
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ul = S00cms".
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ol 4 ron-dimensional evapordtion ume with the gl radius ot the Jluster
. =0.R"=2x10"

T

cmou, = 300cmss

(n order to gain a better unaerstanding about the
behavior of the cluster we display in Figs. 8 and 9 the
history of & R° Since there is a certain uncertainty
about the ume taken to evaporate, and since it
depends strongly upon the evaporation modei. in
order to parually ehminate this uncertainty. the plots
are made vs R, Figure 8 represents the situation for 4
nch mixture. whereas Fig. 9 represents the situauon
for a stowchiometnc mixture. The stnking feature in
Fig. 8 is the imual drop in R; R® which. as discussed
above, is due to the cooling of the gas phase and
the continual heaung of the drops. Following this
decrease in &/ &°. a mimimum 1n this value 15 reached.
after which there ensues a recovery. This recovery 15
due to the unvitiated (by fuei) hot gas brought :n
through turbulent transport from the gas phase sur-
rounding the cluster As expected. turbulence model
2 offers more possibilities for recovery. As the cluster
1s smaller and the number of drops decreases. there is
less of a drop 1 R R°. the mmmum R R° occurs
carlier with respect to R, and the final value of R R
1s closer to umity. Figure 9 shows that in contrast to
the nch mixtures. for stoichiometnc mixtures there is
no munimum 1n R R°: the size of the cluster con-
tnuously decreases with R,. However. there s less of
a cluster shninkage due to the fact that there is less
mass in the cluster, less cooling and less mass loss.

The practical implicauons of these resuits with
regard to opumizauon of evaporation 1s siraight
forward. Turbulence should be induced in the gas in
which the spray 1s injected pnor to or at the same ume
as injection. Turbulence can help to evaporate the
drops of the spray through (wo processes. First 1t
can break the spray into clusters and the smaller the
cluster. the shorter the evaporation time. Second, 1t
brings 1n unvitiated (by fuel) hot gas from the sur-
rounding of the clusters thereby enhancing and sup-
porting evaporation. Moreover, the results show that
evaporation of drops 1n dense clusters can be con-
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minming the outcome of evaporation Between these
regimes of very dense and dilute clusters there exists
a regime where both the history of turbulence and the
initial relauve velocity between drops and gases can
be important con(rol parameters.

Furthermore. the results show that the evaporation
ume of 1 dilute cluster cannot be decreased by reduc-
ing 1ts wuual size while keeping the inital air fuel
mass ratio constant [n contrast. for dense clusters. the
evaporaton tme Jecr2ases with the imual size ot the
cluster at the same :mt:de air tuel mass ratio. More-
over. by having turbuience present initially, rather
than ietung 1t builld up. the evaporauon ume of
the cluster can be further decreased.

Thus gas phase turbulence can be important i1n
reducing the ¢vaporaton ume in two ways. Fuirst,
turbulence breaks up the spray in small size clusters
right at the et of the 2inmuzer. where the spray 1s
dense. Second. turbulence ucts as a4 vehicle for trans-
porting muss. spectes and heat to the cluster. thus
supporting evaporation. The above results have
shown that turbulence 1s a strong control parameter
for dense clusters but 1t s not & controi parameter for
dilute clusters This means that in order to influence
evaporation 1o sprays one should install turbulence
enhancement devices right at the exit of the atomizer
where the spray is dense and not further down the
length of the combustor where the spray has become
dilute. Indeed 1t 1s well known empirically that this
1s true and the present results provide a theoretical
justification for a well-known fact. However, it would
be very desirabie to have a set of experiments to com-
pare with the predictions of the present theory. The
present conclusions show that most of the sensitivity
of our model and thus most of the control 1n an
experiment can be expected in the dense-cluster
regime This makes 4 companson so much more
difficult because it i1s precisely 1n this regime that
experniments are most ditficult to perform because of
the lack of resolution.
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APPENDIX

As explained 1n Section 3 ¢, 1s obtaied a5 a tunction ot ¢
from the conduction equation The ten equations that are
solved for the t.n depende.at vanables identined at the end
of Section 2 are as shown be!sw Define

o cdy
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where the integrations are performed using ¥/, und ¥,. Js
given by the approximation of equation (5)
The equations solved are as follnws
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trolled whereas when they are 1n a dilute configuration
i cannot. This means that evaporation control shouid
be envisaged near the injector in order to be truly
effecuve. rather than further along the combustor.

5. SUMMARY AND CONCLUSIONS

The model presented above i1s one example of
subgrid models that are needed to descnibe spray evap-
oration and combustion. As such, the predictions of
the model pertain to the global behavior of clusters
of drops rather than the detail of the behavior of each
drop in the cluster and the difference in behavior
between the drops belonging to the same cluster.

Despite the simplicity of the turbulence models used
herein there are many important aspects that have
been elucidated by the results obtained with the two
models. First, 1n contrast to dilute clusters of drops,
the evaporation of very dense clusters of crops s
greatly affected by the irutial level of turbulence in the
surrounding gas. Not only 18 the evaporation time
affected but also it 1s shown that by having turbulence
1tally present rather tnan letting 1t build with ume,
one can obtain complete evaporation before satu-
ration 1n situations where otherwise saturation was
obtained before complete evaporation. Thus, for
dense sprays the transfer processes between the gases
in the cluster and the surroundings are crucial in deter-
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Fic. 9 Vanation of the rendual cluster radius with R, for different imual cluster radu for a dilute
cluster of drops: TS, = 1000 K, T3 = 350 K. ¥}, = 0. R® = 2x 107" cm, &’ = 500 cm 3°', ¢ =187
("= 852x108cm™}, RS = 29.6).
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EFFETS DE LA TURBULENCE PENDANT L'EVAPORATION DE GOUTTES DANS
DES GRAPPES

Reésumé—On presente un modele d'evaporation de gouttelette dans des grappes et les mecanismes d'echange
entre ia grappe et la phase gazeuse environnante. Ce modele est developpe pour uttliser un modele de sous-
echelle dans les calculs d’evaporation et de combustion d’aerosols et pour decnre le comportement giobal
de la grappe. la pression du gaz demeure constante pendant I'évaporation et par suite le volume de la
grappe et la densite du nombre de gouttes vanent. On considére deux modeles de turbulence. ie premier
decnit I'évaporation dans |'environnement initialement sans turbulence laquelle se constitue au cours du
temps . le second modele decnt I'évaporation dans l'environnement lorsque ia turbulence existe initialement.
Les resultats obtenus montrent que la turbulence augmente I'évaporation et qu'elle est un lacteur de
commande de I'evaporauon des grappes trés denses. Lorsque le rapport initial des masses air combustible
augmente. a I3 fois ['histoire de la turbulence et la vitesse relauve (nittale entre gouttes et gaz peuvent
contréler I'évaporation. On montre que le temps d'évaporation diminue avec un accroissement nitial des
niseaux de turbulence ou de la vilesse relative. Lorsque le rapport initial des masses air combustible
augmente encore plus et que la densité imitiale du nombre de gouttes entre le regime de dilution, aucun des
deux parametres ne peut controler I'’évaporation. Le temps d'évaporation decroit avec la diminution de la
taille de la grappe pour des grappes de gouttes denses, tandis que la taille de la grappe n'est pas un facteur
limuant pour les grappes diluges. On discute des implications prauques de ces resultats.

]
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J BeLLAN and K HarsTaD

EINFLUSS DER TURBULENZ ALUF DIE VERDAMPFUNG VON TROPFEN IN
SCHWARMEN

Zusammenfassung—E:n Modell fiir die Tropfenverdampfung in Schwarmen und fur die Austauschprozesse
rwischen dem Schwarin und der umgebenden Gasphase wird vorgestellt Dieses Modell wurde zur Be-
rechnung der Spruhverdampfung und der Verbrennung entwickelt und beschreibt aur globale Ver-
haltensmerkmale von Tropfenschwarmen Der Gasdruck :m Tropfenschwarm bleibt wahrend der Ver-
Zamptung konstant, als Folge davon varuert das Voiumen des Tropfenschwarms und die Tropfenanzahl
pro Voiumenemnheit Zwer Turbulenzmodelle werden herangezogen Das erste Modell beschreibt die
\erdampfung von Troptenschwarmen in emner Umgebung. die anfanghich turbulenztrel st Jdie Turbulenz
hautsich erst mit der Zewt auf Das zwerte Modell beschreibt die Verdampfung von Tropfenschwarmen in
ainer L gebung in Cer von Anfang an Turbulenz voriiegt Die mit diesen Modellen erhaltenen Ergebnisse
zeigen. Jad Turbulenz die Verdampfung begunsugt und ein kontrollierender Parameter ber der Ver-
Jamptung von sehr dichten Tropfenschwarmen ist Beispiele werden gezeigt. in denen mut dem ersten
Turbuienzmodell Sattigung vor der volistandigen Verdampfung erhaiten wurde. wogegen sich mit dem
zwe'ren Turbulenzmodell das Gegenteil ergab Steigt das Anfangs-Massenverhaltms Lurt Brennstotf. so
ka- Howohl die Vorgeschichte der Turbulenz als auch die Anfangs-Relatvgeschwindigkeit zwischen
Trzpten und Gas die Verdampfung beeinflussen Es wird gezeigt. dal die Verdampfungszeit mut einer
Erhohung des Turbulenzgrades oder der Anfangs-Relauvgeschwindigkert abnimmt Steigt das Anfangs-
Massenverhaitms Luft Brennstoff werter und tallt die Tropfenanzahl pro Volumeneinheit zu Beginn in den
Bereich fur jockere Schwarme. so beeinfluBt ketner der beiden obengenannten Parameter die Veruamptung
Ber Jdichten Troptenschwarmen serkurzt sich die Verdampfungszeit mit abnehmender GroBe des
Schwarms. ber lockeren Schwarmen hat die GroQe keinen Einflul Die prakuschen Folgerungen aus
den Ergebnissen werden diskutiert

JOPEKTHI TYPBY.IEHTHOCTHU MPH UCMTAPEHHUU K.TACTEPOB KAME b

A-onm—ﬂpe:xcraueua MOge.Th HCMAPEHHA KTACTEPOS KaNe.1h H ONHC2HM TPOUCCEN obmena Mexay
KJaCTepaMH H Hecyuwlef ra3osoR cpedoR. Paipa6oTaHHas MOJe.Th, ABIANCHE NOACETONHOR. HCNOABIYETCA
118 pacveTa HCMAPeHHS W FOPEHUA PaCNLLION KaMeTh, 2 MOITOMY YYHTMBALT TO1MKO r106a1MHME OCO-
GeHHOCTH NOBEICHHA HCMAPNIOWMHACE K1acTepos. [TpeanonaraeTca. YTo B NPoOUECCE HCAPEHHA Jas.ie-
HHE rala B KTacTepe OCTICTCA MOCTONHHMM, TAK 4TO NMEPEMEHHMMH 23IROTCE 06¥EM K1acTepa H
LTOTHOCTS YHC12 K3NeTh 8 Hem. PaccmoTpens ade Mogean TypSytexTHocTH. [Tepaas onucasaer ucna-
peHHE K1acTeps B cpede, s KOTOpOft sHasase TypSY.JIEHTHOCTS OTCYTCTBYET, HO “MOAXTIONALTCA™ CO
BPEMEHCM N0 Mepe HCTAPENNA KIACTEPOs. BTOopas mMoJeTs onMCMBaeT HCTapeHNe KIACTEDA B cpene ¢
Hava.IbHOR TypSynewtAocTRio. Coriacuo oSewm MoJeasm TYpSY.JEHTROCT yCKOPAET HCMapexue,
ALIARCh ONPelEINOWAM GAXTOPOM PR MCTIADEHNN O¥eMb ILIOTHMX K1acTepos. [Ipadesenn npumepnl,
5 KOTOPMX MOK23AHO, ¥TO C HCTIONMBIOSAHNEM NEPBOR MOLLTH HACMILCHHE HACTYTIALT JO NOJINOCO HCMa-
PEHHR KaMneTh, 2 C HCMOMIOBAHNEM BTOpOR Habmonaerca npoTusononoxuui xpdest. [Tpn yseanve-
HHH HAY2.1bHOTO MACCOBOrO OTHOWEHHS BOIQYR/TOPIONEE HCMAPEHHME JASHCMT K2R OT NPEAMCTOPHM
TYPOYAECHTHOCTH, Tak H OT HATATBHON OTHOCHTEIBHOR CXOPOCTM IBMXCHRR ¥ane.Ts ¥ rala. [Toxasao.
YTO BPEMA HCTIAPEHHE YMEHBUACTCR, CCTH HAYAIBHAIR ypOBEML TYPOY.IEHTHOCTH N OTHOCHTEIbHAN
2 70pOCTh 30IPACTAIOT. [IPA CYWIECTRENHOM YBEIMTEHMN HAYAIBHOTO MACCOBOrO OTHOLUEHHS BO3LYK,
TOMLTHBG H YMEHBLICHHN HATABHOR {LTOTROCTH YHCIA Kane.ls 30 PAIPEMENNOrO PEXMMA HM OONM U3
BMIUCYKAIAHHMX MAPAMETPOB HE OKAIMBALT PEulalouiero RINAWHA Ha Hcnapeume. Kpome Toro noxa-
1aHO, YTO BPEMR HCTIADEHNS YMENBILIALTCE C YMEHMUICHHEM PaiMeps K1acTepn pu GonswoR wioTHOCTH
YHCTA K3neTh, 3 PA Manoll (LIOTHOCTR PAIMEP K1ACTEPa HE SANNETCS ONPERLTMOWNRM GaxTOPOM.
OGCy=aa10TCR MPACTNYECKNE 2CNCKTH NO.TYNEHHMX PEIY/IHTATOS.

-
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ABSTRACT

Two global models of droplet cluster evaporation which take into account drop
interactions are compared. Comparisons between the results obtained with the rwo
cluster models show that although the qualitative trends are the same, quantitative
discrepancies exist. To evaluate and improve the models it is suggested that
experimentalists measure evaporation times and cluster decay/growth rates in the dense
cluster regime, and for small clusters, where the sensitivity of the results is
highest.

INTRODUCTION

Measurements performed i sprays characteristic of power systems show that spravs
are composed of several regions [1]. Near the atomizer the drops might not be
entirely formed and liquid sheets and filaments might still exist. There follows a
region where the drops are already formed but have not yet been dispersed, so that
they cluster together with a typical distance between the drops that is of the
order of magnitude as that of the average radius of the drops themselves.
of the spray is called the dense spray region. Finally, further from this dense spray
region there exists a region where the drops might still cluster, but in these
clusters the distance between drops is much larger than the average racdius of the
drops. This region is called the dilute spray region.

In the dilute spray regjon drops are far apart from each other and thus when the
spray is exposed to a convective flow, these drops practically behave like isolated
drops in a convective flow. ‘In contrast, in the danse spray regime, the drops are
close to each other and thus their history is controlled by how much of the surround-
ing gas can enter in contact with them. This is to say that, unlike for drops
belonging to dilute clusters of drops, transport phenomena are crucial in determining
the behavior of drops belonging to dense clusters of drops because transport imposes
limits on heat and mass transfer between the two phases. These phenomena pertain to
indirect interactions and they can control the drops motion, their heat-up time,

evaporation, ignition and combustion.
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Previous work of Bellan and Cuffel(2] and Bellan and Harstad ({3,4,5] pointed out
some important consequences of these indirect interactions. Two models of turbulent
transport were used in Ref. 5 in order to investigate the importance of turbulent
transport from the surroundings to the cluster. Because of the global aspect of the
model in which all the drops were assumed to behave identically, the transpecrt from
the cluster to surroundings was modeled using a "trapping factor." Basically, the
"trapping factor" is a weighing factor which allows the modeling of intermediary
s'tuations between those of dilute clusters where evaporated mass was assumed o be
trapped in the cluster and that of dense clusters where evaporated mass was assumed to
escape to ambient. It was found[5] that whereas in the dilute regime turbulence is
not a controlling parameter, in the dense regime it becomes the crucial control
parameter This is a fact well knoewn by experimentalists and design engineers who
locate turbulent enhancement devices near the injector where the spray is dense,
rather than further down the combustor where the spray is dilute.

Since the transport processes between the cluster and its surroundings were found
to be so important in the case of dense clusters, it was thought very imporcant <o
improve the description of the transport of heat, mass and species from the cluster
and its surroundings. This new model is described in detail in Ref. 6 for
electrostatically charged drops, and is used to calculate the results presented below
for the special case of null charge. Due to the brief nature of the Technical Note,
the nomenclature is the same as in Refs. 5 and 6.

The model developad in Ref. 6 is similar to that of Ref. 5 in that.the drops and
gas have two velocity components: a uniform axial componen. along the trajectory
direction and a radial component. The difference bertween the two models is in the
description of the radial velocity component. Whereas in Ref. 5 a "trapping factor"
was used as discussed above, the new formulation uses the assumption of self-

similarity in the radial direction as exvlainec in detail in Ref. 6.
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RESULTS AND DISCUSSION

Calculations were performed using the models of Refs. 5 and 6 for n-decane drops
evaporating in a spherical cluster surrounded by unvitiated ambient air at atmospheric
pressure. The thermophysical constants used in the calculation have been listed in
Ref. 3.

Figure 1 shows a comparison of the results obtained with the two turbulence
models for each one of cthe "trapping factor" and similarity models. The evapo' .:ion
t‘me which is plotted versus the intial air/fuel mass ratio represents either the cime
when R} = 0.05 or the time at which saturation was obtairea. As can be seen in Fig
1 che discrepancy between the four sets of results is small in the lean mixture and
dilute spray regim2. This is because in this regime transport processes are notC
important in determining the evaporation time due to the fact that the drops are far
apart and enough heat is available for their evaporation. As the initial mixture
becomes rich the discrepancy between the "trapping factor" and similarity models
becomes larger. In contrast to the rasults obtained with "trapping factor" model, the
siwmilarity model predicts that turbulent transport is important even in the rather
dilute cluster regime (n® = 5 x 103 em™3).

Wwhen ¢° decreases fucrther, the initial mixtuce becomes richer and the diop number
density falls into tha dense regime (n® > 10¢ cm’?). As the initial drop aumber
density is larger, turbulence becomes crucial in determining the evaporation time as
it is clearly shown by both cluster models. Lowever, the results become extremely
sensitive to the cluster model itself because for example for n® = 5 x 10% cm™? the
"trapping factor" model predicts saturation before complet2 evapcoration whereas the
similarity model prasdicts the cpposite. It is expected that rhe regime of saturation
before complete evaporation will Le encountered with the similariry model at higher
n®. What this comparison shows is chat global models such as one of Refs. 2-5 can be
expected to offer only a qualitstive understanding. The quantitative predictions can
be obtained only when the results of these global models can be compared with

experimental cbservaticns. On the other hand experiuentalists need information on



what to measure, and where to make measurements. The present results show that in
order to validate globel models, measurements of evaporation times should be made in
the dense cluster regime where the sensitivity is highest.

In Fig. 2 the evaporation time is displayed versus the initial radius of the

cluster for an air/fuel mass ratio corresponding to a drop number density which is the

dividi-y - "ue for denss,nondense sprays under the initial conditions shown in the
legend. Both cluster models predict that cturbulent ctransport effects are rore
important for smaller clusters. This is due to the smaller volume to surface rat:o

and thus to the greater need to transport hot unvitiated gas to the drops in order to
promote evaporation. Although the qualitative predictions of the two cluster models
are the same, gquantitatively the smilarity model predicts a smaller effecrc. Once
again, experimental observations are needed to show the quantitative effect of
turbulence, and these experiments should be performed in cthe small cluster regime
where the sensitivity is highest.

The importance of the cluster mcdel used is again illustrated in Fig. 3 where the
final size of the cluster is compared with the initial size of the cluster for several
initial cluster sizes. In all cases larger clusters cont.act more, relatively to
their initial size, than do small clusters. This is due to the heating cf the drops
and the consequent cooling of the gas phase. A smaller number of drops in a cluster
results in less cooling of the gas phase at complete evaporation and shorter
evaposation time; this is the case of the smaller clusters. A higher turbulence level
will enhance transport of heaf to the cluster and thus there will be less cooling and
consequently less cluster contraction; this i{s the case of turbulence model 2. For
small clusters and high turbulence levels the similarity model predicts that the
cluster actually expands. This is another trend that needs experimental verification.
In this case observations should be performed again in the small cluster regime.

Finally, plotted in Fig. 4 and 5 are respectively the relative fuel mass loss and
the relative total mass loss from the cluster at the end of evaporation. These

results were obtained with the similarity model, which {s believed to be the more
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accurate of the two cluster models. 1In the case of dense clustars, the relative fuel
mass loss from the cluster is important because ignition outside of the cluster is
expected!?] with only the ejected fuel participating in ignition. The fuel loss ratio
depe- ds strongly on the cluster size and the turbulence model. In contrasc, the tzatal
mass ratio is nearly insensitive to the turbulence model for large clusters, with a
larg r sensitivity shown for smaller clusters. However, similar to the fuel mass
ratio, the total mass loss ratio increases substantially as the cluster size
decreases. The larger fuel loss and greater entrainment for smaller clusters may be
attributed to their larger surface to volume ratio. It is important to notice thac
the present model deces not account for vortical motion of the drops inside the cluster
and thus the results predict a minimum amount of mass escaping from the cluster due :o
the lack of centrifugal force effects. In order to validate experimentally models

such as those described above, rates of growth or decay of clusters are needed for

comparison.
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FIGURE CAPTIONS
Evaporation Time versus Initial Air/Fuel Mass Ratio.

T%, = 1000°K, T%gg = 350°K, Y°pya = O, u®. = S00 cuysec,

8

RO = 2 x 10°3 cm, R® = 10 cm.

Evaporazion Time versus Initial Cluster Radius.

- 10009, 19, =

0% = 1.57 (n® = 9.44 x 10% ca”?, R%) = 13.3), T° gs

ga
350°K, Y%z = 0. u®, = 500 cm/sec, R? = 2 x 1072 cm.

Nondimensional Final Cluster Radius versus Initial Cluster Radius.
$% = 1.57 (n® = 9.44 x 10% cm™3, R%) = 13.3), T, = 1000%K, T%g =
350%K, Y%py, = O, u®, = 500 cm/sec, R® = 2 x 1072 cm.

>
Fuel Loss Ratio versus Initial Cluster Radius Obtained with the
Similarity Model.
$° = 1.57 (n® = 9.44 x 10? cm™3, R9) = 13.3), T%, = 1000°K, T -

350%K, Y%pya = O, u® = 500 cm/sec, R® = 2 x 1072 cm.

Total Mass Loss Ratio versus Initial Cluster Radius Obtained with the
Similarity Model.
$° = 1.57 (n® = 9.44 x 10% em™3, RO = 13.3), T, = 1000%K, T =

350°K, Y°pya = O, u®, = 500 cm/sec, R® = 2 x 1073 cm. g
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I.  INTRODUCTION

Sprays., crea-ced by atomizing liquid fuels, have been considered for . long
time as one of the most efficient ways of burning liquids. This is because in a
spray the surface-to-volume ratio is greatly increased compared %o a blob of
liquid. The extra surface increases the efficiency of transport of heat to the
liquid, thereby promoting evaporaticn, ignition and combustion of the fuel.
Liquid sprays are also used in agriculture to spray crops, in the food industry,
in coating, and in printing.

In order to improve all these processes, one needs first to understand
them. Such understanding can be achieved in a variety of ways. For many years
now, the only universally accepted way of improving a process was tc physically
experiment with it. This involves building a prototype operating under a
variety of conditions. The results of these experiments are vecorded and
compared. The prototype systenm can then be "tuned" to operate under the optimal
conditions achieved during the expariment. The simplistic "cut and try” method
described above 1is making room for z growing use of analytical methods and
computational techniques based on the availability of large computers.
Experimental techniques, which have ©become themselves increasingly
sophisticated, are usually very axpensive and are limited not only by the
sensitivity of che diagnosric but also by the range cf cenditions ,that can be
studied. "1 many cases, it is cheaper to vary the parameters in an existing
computer code to simulate a different physical situation than it is te build or
alter an experiuental set-up to obtain new experimental resulcs. The
flexibility of computer codes in terms of input conditions and output results

make them a very powerful tool both for engineering calculations and

understanding the fundamentals of physical phencmena.
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Below I shall describe how the computational approach has heiped the
understanding the fundamentals of spray evaporaticva, the interactions between
the drops in a spray, the interactions between the drops and the gas surrounding
them, and subsequent ignition and combustion. This understanding in turn
provides the basis for controlling these phenomena.

A typical 1., uid spray is composed of three main regions, although the
boundary between these regions is not always very distinct. Near the atomizer
there is a region of liquid filaments that are the precurscrs cf drops.
Adjacent to this region is a region of very closely spaced drops such that the
spacing between the drops is of the same order of magnitude as cheir size; this
is called the dense spray region. Further downstream one encounters a region
where the drops are no longer closely spaced; this is called the d.lute spray
region.

Recent observations of liquid-fuel sprays have revealed that although the
fuel flow to the injector is constant, drops appear to cluster in the spray and
remain clustered during combustion (1,2,3,4). Thus, there is not one continuous
flame surface in a burning spray, but instead there are many flame surfaces,
each one enclosing groups of drops (3,4).

A characteristic feature of sprays is the wide range of space scales
iavolved in their descripiion. For example, a few of the most obvious scales
are: the scale of the enclosure, if any, where the liquid is sprayed; the many
turbulent scales associated with turbulence bu’ld up and decay; the scale of
droplet interactions; the average distance between drops; and the scale of drops
themselves. These scales vary by orders of magnitude from the largest to the

smallest, and this implies that an accurate mathematical description at all

scales is impractical. To circumvent this difficulty it has been proposed (5)
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taat the macroscale, which is the scale where phenomena occur that are of
interest to engineers, bz described In detail and that the wicroscale, which
encompasses thf "cales much smaller than the macroscale, be described in an
approximate &nd global manner. The coupling between the two scales must be
achieved through the boundary conditions at the micrcscale level. The
microscale formulation is also sometines called a subscale or subgrid model
because the phenomena that are invoived occur at a scale much smaller than that
of the grid size used to -:omputationz2ily resolve the macrcscale problem.
Inherent to this two-level description is the undesrstanding that the subscale
models are more app:oximate than the macroscale models and lack of detail that
the latter are required to have in orasr tov be useful. This concept is similar
but not identical to the proposed particle-source-in cel! model by Crowe

et.al. (6).

The observation of clusters of drops in sprays points to the natural choice
of the cluster size as one of the important microscales. Within this frame it
is envisaged that each cluster should be followed on its trajectory in a
Lagrangian way and that the coupling bastween the cluster and its surroundings
should be achieved through proper boundary conditions at the clustar surface.
One example of the iamplementotion of this concepc can be found in Tambour (7).
He partitions the spray Iinto section of drope of known characteristics and
follows each grou:p of vaporizing drops along a streamline in a Lagrangian manner
while calculating one incegral characteristic quantity for each ssction. In his
model thi{s integral quantity can be either the number of drops, surfszce area of
the drops, or volume of the drops. A missing input of this model is a

calculation of drop evaporation rate in each section; instead, the author

cleverly estimates this rate frcm the experimental data of Yule et. al. (8)
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using the @t - law arproximation. As expscted, the characteristics of esch

group of drops cg;nge during a4 calculation. Thus, it is important to /:alculate
these changes as they occur rather thar to fit them in an approximate way by
priori using experimental data. This oxample indicates that models of droplet
clusters must be able to handle the many areas whero drups exist in a spray,
going from the dense region to the dilute region as discussed above.

Experimental observations show that denss and dilute collections of drops
behave very differently. In the dilute regime the drops are so far away from
each other that they behave as 1f isolated fnr all practical purposes. The
behavior of iandividual, isolated drops under a variety of aszumptions is
described by classical theory (9). In contrast, when drops ai= clo 2ly spaced,
their behavior changes due to limitations on heat and mass transfer which result
from drop interactions with the background gas. These interactions are called
indirect or long range interactions. Direct or short range interactians, such
as drop coliisions, coalescence or breakup, will not be discussed here. Beer
and Chigier (10) show that the quantity obtained by dividing the difference
becween the initial droplet diamecer squared and the actual diameter squared by
the time elapsed from the initisl condition,varies non-monotonically with thsa
average Iinter-droplet separation distance. In contrast this quantity is a
constant for an 1solgtod'drop and i{s called "ths burning constant." As the
inter-droplet separation distance is roduced from large values for which drop
interactions are negligible, the burning constant increases to a maxiaum, and
then decreases. This behavior arises becsuszs heat losses are reduced when the
drops are brought slightly closer together, thereby increasing the burning

constant. However, when the saparation i{s greatly reduced, the amount of oxygen

available for combustion diminishes and thus decreases the burning constant.
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This latter situation, which typically prevails in spray, was investigared
exper‘mentally by.Koshland (11,12) and Koshland and Bowman (l3). Thu.. results
show that, in agreement with Chigier and McCreath (14) and Rao and Lefahre {15),
both evaporation and combustion of groups of interactive drcps depend on drop
number density as well as the oxygen coacentration in the ambient gas. Oxygen
competition was identified (11, 12, 13) as one of the processes that can charge
the combustion mode of groups of drops from individual flames around drops (in
an oxygen-rich environment) to a group combustion mode where the flame surrounds
the droplet cloud (in an oxygen-lean env: ronment). Thus, the prediction of the
global gas phase characteristics ingside the drop cloud 1is of paramount
importance for the calculation of both evaporation and burning rates.

Moreover, many of the pollutant fo.ming reactions also depend indirectly on
the drop number density and the oxygen concentration. Sangiovanni and Liscinsky
(16) showed experimentally that soot production is a strong function of the
interspacing between drops. Their vresults are actually conservative wich
respect to the situation in a spray, because in their droplet-stream experiment
there was no way to account for the influence of lateral spacing between drops
in the direction perpendiculif‘to the stream. In a real spray, the average drop
is surrounded in all three dimensions by other drops. For a variety of fuels
and ambient oxygen concentfations, it was shown that by increasing the droplet
spacing, a substantial decrease can be obtained in the soot emission (16).
Reductions in spray flame teamperature and NOx levels were also associated with
droplet interactions as shown by Chernansky and Sarv (17) who interpreted their
results in terms of oxygen depletion during burning. Additionally, the question

of whether the drops disappear well before the entire amount of fuel-vapor is

burnt has direct bearing to the formation of carbonaceous, porous particles
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called cenospheres. These particles form from each individual drop during
combustion of h;avy-oil sprays once the mwmore volatile hydrocarbons have
evaporated and the tar-like material is left behind. It appears that contrary
to the classic;l d?-law assumption of equal vaporization and burning rates, even
for mildly diluce groups of drops (initial drop number densities of 18-80
drops/cm3?), the vaporization rate i{s higher than the fuel vapor oxidation rate
(11). Thus, the drops disappear welil before the vapor fuel is burnt, and
homogenous burning prevails during the latter ctime of drop ciuster combustion.
The above discussion indicates that models of dreplet clusters must be
flexible enough to accommodate both dilute and dense configurations and that the
cluster drop number density influences many of the crucial aspects of
combustion. The remainder of this article is organized as follows: In Section
II, 1 describe some current models of drop interactions and show that they have
limitations important enough to preclude them from being used as subgrid models.
In the third section I present the approach that we propose for modeling drop
interactions. I show that our model has the pectential of being used as a
subgrid model. In addition, I discuss specific situations that were modeled and

the results obtained using tﬁis formulation. Finally, the Conclusion, Section

IV, contains a discussion of the needs for further research.

I1. SURVEY OF DROP INTERACTION MODELS

In the present context, models of droplet interactiona describe the
interactions among & large number of drops. This precludas models of detailed
interactions between swmall numbers such as two .r three drops. While the few-
drop models have helped to understand departures from single, isolated-drop

behavior, they themselves are not candidates for subgrid models of dense sprays.
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Moreover, these few-drop models involve large computational expense as well, and
thus are net eco;;mically suitable as subgrid models.

One of the earliest contributions to the modeling of muitiple drop
interactions was made by Zung (18) for the evaporation of drops in atmospheric
clouds. The cloud is approximated by a series of cubes having sides equal to
the distance between the centers of two adjacent drops. Thus, each cube
contains an identical drop in its center, and these cubes are further
approximated by spheres of equivalent volume. Zung assumes that no mass
transfer occurs between cells, and uses this assumption to predict the rate of
drop disappearance in terms of an average concentration inside the cell. The
results of this model show that the evaporation rate of a cloud is strongly
dependent upon both the drop radius and the distance between cdrops. In
particular, saturation of the vapor in the ambient gas can occur before complete
evaporac.on in some cases.

The drop-in-a-cell idea is also used by Ti_ hkoff (19) who simulated the
interactions among evaporating drops by using an isolared drcp in a "bubble" of
finite and constant radius. Because boundary conditions at the "bubble” surface
are specifiec as a function of time, the actual interactions betwean drops
during evaporation are given and not calculated. However, by cleverly changing
the size of the bubble, Pishkoff shows that the initial spacing becween drops
strongly influances the outcome of evaporation. Wheni ths bubble is large
compared te the drop, the drop evaporates complately; whereas when it is small,
vapor phase saturation may occur before complete evaporarion.

Chiu and his co-workers (20, 21, 22, 23) took a very different approach.
In their initial analysis, a parameter G, which is the ratio of tocal heat

transfer between the two phases to ths heat needsd to evaporate the drops, is
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identifisd as a crucial number indicating the combustion mode for the drops in
the spray. If G exceeds a critical value, a single flame surrounds the entire
spray and the drops burn in what {s called an "external group" mode. In
contrast, below this critical value of G, isolated dreplet burning occurs. This
analysis was later (22) refined to include other combustion modes between these
two extremes. The weakest aspect of this model is the difficulty in obtaining
information nece ary to calculate G. Finding G involves the use of empirical
formulas characterizing the exchange of mass, momentum and energy between the
phases. These formulas are based upon those of the classical single-drop
evaporation in infinite surroundings. Realizing this, an attempt was made
recently (24) to improve this anodel through the use of a modified drop-in-a-
bubble model. The "test" drop is surrounded here by a "first coordination”
shell which corresponds to the radial position of the largest number of drops
close to the test drop. Thus, statistically there can be other drops inside the
cell, but the model will not take this into account. Using the same idea, a
series of second, third, etc. coordination shells are developed. The farthest
shell from the drop is a transition shell, the outer edge of which has a
continuum of dropsjand at this outer edge the gas properties are prescribed for
the determination of the drop evaporation rate. The droplet arrangement inside
these shells must be provided either experimentally or theoretically through a
pair-distributien function that represents the joint probability of finding a
drop located at a given distance from the test drop. Since this information
wust be p.ovided at every instant of time, and it is very difficult to obtain,

except for the simplest of situations which can be treated using simple

formalicsms, this latest model of Chiu et.al. does not seem practical.
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The idea of group combustion was also examined by Correa and Sichel (25).
Their model assu;ed that the temperaturea of the gas in a spherical, uniform,
monodisperse cloud of fuel drops immersed in a quiescent atmosphere was
initially in ;aturat:ed equilibrium and that it stayed so during combustion.
This assumption precludes the calculation of the influence of drop proximity
upon the gas temperature inside the cloud and this has a bearing upon the
calculation of the drop evaporation rate. Additionally, they also assumed the
ratio of the inter-drop distance to the drop diameter to be of order 10, so that
the conclusions based upon results obtained with this model apply only to this
regime and not to much denser collections of drops. The largest drop number
density for which results were presented was 3x103ce3.  The results predicted
the existence of a thin inwardly propagating vaporization wave at the edge of
the cloud, a decrease in cloud radius follcwing the classical d?-law with a
modified "evaporation constant", and a flame-radius to cloud-radius ratio and
flame temperatur-e independent of the cloud parameters. The flame temperature
was found to be indeperdent of the cloud parameters because the gas temperature
inside the cloud was assumed fixed at the saturated equilibrium condition during
evaporation and combustion.

Group combustion of drops was wmodeled in a totally different manner by
Labowsky and Rosner (26), and Labowsky (27, 28, 29). Under the quasi-steady gas
phase assumption, two different approaches are used to model interacting droplet
burning (26). In the first approach, the cloud is treated as a continuum with
the droplets acting as distributed sources of fuel and sinks of oxygen. In the
second approach, the flame location is calculated for cubical arrays of up to

729 particles. The flame location is found by solving the Schvab-Zeldovich

equations., These equations are further transformed to Laplace equations which
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in principle can be solved by the method of images. However, since the
computational cos;s of the second approach become prohibitive when the number of
partricles reaches about 20, the authors solve the equations using a
superposition method which is an approximation of the method of images. In this
approximation, higher-order terms on the image series are neglected with the
result that particles ~sre again treated as point sources and their fields are
simply superimposed. Thus, again, interactions due to particle proximity are
neglected as these interaztions wouid have been contained in the higher-order
terms. The continuum method yields reliable solutions only when the number of
particles is large (in a dilute cloud), «nd the second method yields reliable
solutions only when the number of particles is small. The results show that in
virtually all pracztical situations of interest, clouds burn as a total group.
This condition is defined as that occurring when the cloud as an entity provides
sufficient vapor so that fuel and oxygen meet in stoichiometric proportion
precisely at the cloud boundary where they will burm.

Although drop interactions are not accounted for by Labowsky et.al (26),
one important contribution of this work is to have ident.fied the ratio of the
fuel-cloud radius divided by the fuel-particle radius as the important
characteristic which determines the mode of combustion of the drop in the cloud.
If this ratio is less than a critical value, the particles burn individually.
On the other hand, if this ratio is larger than another critj al value, the
flame surrounds the entire cloud. Presumably, if the characteristic ratio falls
between these two critical values, there will be several separate flames
surrounding groups of drops inside the cloud. Although the superposition

approximation is not wmade by Labowsky in (27), the actual calculations are

limited to a three-droplet array which limits the generality of the results.
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Additionally, the analysis uses the assumption that the particle temperature is
not affected by the drop interactions, an assumption which {s certainly not
valid for cloﬁfly spaced drops, as it will be shown later. In fact, all the
comparisons between this theory using the method of images and experimental
observations (28, 29, 30), are made with experiments containing two, three, or a
stream of drops. This is because, the method of images leads to financially
prohibitive calculations for arrays of more than about 20 drops (26). The
largest number of drops considered in a calculation performed with this method
was 25, and the comparison was made with a stream of interacting drops (30).
For the two, three or 25 linear-drop array, the comparisons with experiments
showed reasonable agreement for the drop lifetime when compared with experiments
involving two, three, or a stream of drops, respectively.

Samson et al. (31) developed a simple model to describe spray combustion
by combining the classical isolated drop theory devoid of hydrodynamic effects,
and various statistical concepts. In this model, the burning rate of the drops
is identified with their evaporation rate, a fact that is contradictory to
experimental evidence (1ll). Some favorable comparisons with experimental data
are presented, but, in order to obtain these results, iae unknown radius of the
spharical fuel cloud had to be assigned. The values chosen for this radius were
selected to obtain best comparisons between experiments and theory. However,
the authors point out (31), that the experiments used are not really appropriate
to compare with the theory because they involve well defined droplet arrays for
which statistical models are not applicable.

Umemura (32) identifies a function, f, intrinsic to the geometrical

configuration of the cloud and independent of the combustion characteristics, as

the characteristic indicator of droplet interactions. In Umemura's (32) quasi-

153



steady quiescent-atmosphere theory, the drop-evaporation rate is again
identified somewhat incorrectly with the burning rate just as in the isolated
drop theory. gesults are presented for a system of two droplets.

The effect of particle interactions, first on drop evaporations and then on
drop burnirg, was also modeled by Ray and Davis (33) and Marberry et al. (34).
The isothermal droplet evaporation model of Ray and Davis (33) further assumes
that, despite evaporating, the particles‘do not change size (rate of change of
size wuch smaller than the diffusive velocity of the transferred species) and
thus there is no convective transport. By assuming that the particles can be
treated as point sources or sinks, the authors preclude the treatment of dense
collections of particles where the concentration or temperature field around
each drop interacts with that of the neighboring drops. Further, the results
show that the m>del becomes invalid if the number of particles exceeds the ratio
of the distance between particles divided by the particle radius. This
represents a serious restriction to the model. The same assumptions of
quiescent atmosphere and constant particle size are kept in Marberry et al.
(34). The burning rate of eﬁch drop is given by material and energy balance at
the drop surface and these are the equations that now determine the source
strength at each droplet location. The results indicate significant deviations
from the isolated dropleé burning rate if the distance between the drops is
smaller than 20 times the droplet radius. These results were obtained for
systems of 2, 3 and 4 drcps, tetrahedral and cubical arrays so that none of the
drops was entirely surrounded by other drops. In that respect the estimate of
the above ratio of 20 should be understood as a lower limit.

Annamalai (35) modeled the evaporation, ignition and combustion of a

droplet cloud as well., However, the results cannot be expectzd to he reliable
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because his formulation did not contain a genuine dascription of droplet
interactions.

The 3~diqfnsiona1 numerical study of Shuen (36) was meant to investigate
the effect of droplet interactions on transport phenomena for droplet Reynolds
numbers of 5-100, droplet spacings of 2-24 diameters, and oxygen concentrations
of 0.1 to 0.2. The physical situation studied is that of a monosize, planar,
semi-infinite droplet array oriented perpendicular to the direction of the flow.
Shuen also assumed a quasi-steady gas phase with respect to the ligquid phase and
no drop heating. " The geometry studied suggests immediately that droplet
interactions will be underpredicted since there is no drop that is surrounded on
all sides by other drops in a 3-dimensional sense. Furthermore, since the array
is semi-infinite, the amount of heat available to the drops is not a limiting
factor as it is in real sprays. Moreover, the neglect of droplet heating
immediately suppresses one of the most important modes of droplet interaction;
that is, competiticn among drops for the available heat. It is not surprising
that the author finds that interactions between drops become negligible for
spacings greater than :ix droplet diameters and Reynolds numbers greater than
ten. He also finds that drop interactions result in an insignificant change in
drag per drop.

All above-discussed models of drop interaction are deficient in some
important way which precludes both the prediction of the behavior of dense
clusters of drops and their inclusion as subgrid models as discussed in the
Introduction. In the following, I discuss models that have promise in both

these respects. In contrast to the models discussed so far, they include

explicitly the effects of drops interactions. In addition, they are formulated
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in such a way that boundary conditions with the surrounding gas can be changed

in order to describe a variciy of situations.

III. MODELS OF DROP EVARORATION, IGNITION AND COMBUSTION BASED UPON MULTIPLE
DRQP_INTERACTIONS

The models describerd below pertain to a variety of situations and a
description of their assumptions can be found in Table I.

1. Constant-Volume (Variable-Pressure) Cluster Models

In the approach taken by Beilan and Cuffel (37), a cluster of spherical
monodisperse, uniformly distiibuted drops is considered, and the cluster volume,
Ve, can have an arbitrary shape and contain an arbitrary number of drops, N.
Figure 1 shows each drop of the cluster surrounded by a fictitious sphere of
influence whose radius is half the distance betweeri the centers of two adjacent
drops. Thus, the volume of the cluster is in fact the volume of these spheres
of influence added to the volume of the space batween the spheres of influence.
From simple geometrical considerations usual in solid-state theory (38), it is

known that the radius of the sphere of influence thus defined is

(’ 0.74 v, \ /3
\ W3 /

(1)

*

where V. is the cluster volume, N is the total number of drops and "a" is the
radius of the sphere of influencs. In reference (37), the volume V. was
adiabatically insulated, but this restriction is removed in later studies which
will be discussed below. On the length scale of many drops, the ~luster is
cornidered spatially Lomogeneous in the thermodynamic quantities. This means

that each drop behaves like all other drops in the cluster. Moreover, all
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dependent variables are assumed to be unlform in the interstitial space batween
the spheres of in}luence. Thus, the conservation equations for this cluster of
drops consist of: (1) the differential conservation equacionz for each drop and
gas phase inside a sphere of influence, (2) the global conservation equations
for all drops inside the cluster volume, and (3) the perfect gas law. In
reference (37), the classical quasi-steady assumption for the gas phase is made
and thus the differential equations for the gas-phase inside the sphere of
influence can be solved exactly. The quasi-steady assumption is well-justified
at atmospheric pressure since pg/pp = 1073 where pg and py are the gas and
iiquid densities respectivelv For simplicity it is assumed that thermodymamic
equilibrium prevails in the gas phase at the drop surface, and that the drop
temperature is uniform but transient. (These assumptious are also relaxed in
the later studies which are discussed below.) The solution or these equations
contain as parameters the unknown vaiues of species and temperature at the edg e
of the sphere of influence. Since these quantities also appear in the global
conservaticn equations and the perfect gas law, the system of equations is
closed. At every time step, the solution consists of the evaporation rate, the
radius of the drop, the value of the fuel mass fraction and temperature at the
drop surface and at the edge of the spheres of influence, the density and the
pressure (both assumed uniform in V.).

Comparing this model to some of the previously described models one notices
that this model is different both from Tishkoff’s (19) bubble model and Zung's
(18) cell modeil, even though it also isolates each drop in a sphere of
influence. It is different from Tisnknff’s modal because the conditions at the

edge of the sphere of influence aie not imposed, but instead are calculated as a

consequence of the droplet interactions. It is different from Zung's model in
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quite a few aspects, 2ut mainly because it dves not impose zerc mass transfer
be:waen the spher;s of influence and it relates the evaporation rate to an exact
mass fraction inside the sphere of influence instead of an averagud value. When
the volume of<che cluster is constant and the cluster is insulated from the
surroundings, the quasi-steady and spacial homogeneity assumptions imply that
there is no transport between the spheres of influence because there is no
transport out of the cluster and because of symmetry. In contrast to Zung's
model, however, we can evaluate how well the quasi-steady assumption holds by
calculating the gradient at the edge of the sphere of influence The results
show that because the quasi-steady assumption deteriorates as the radial
coordinate, r, increases, the model improves as "a" in Eq. (1) is smaller, that
is for dense collections of drops.

All the calculations presented below are for n-decane. Symbols in the
figures and text are defined in the Nomenclature. Figure 2, produced from Ref.
(37) shows plots of both the cluster evuporation tizme, t®,4], obtained with the
model described above and the ratio of this time to that of the evaporation time
obtained with a model of dilute spray evaporation (39), t®,41/t®q;. For dllute
collections of drops, the predictions of the two models agree. However, as
soon as the non-dimensional radius of the sphere of influence, Ry, is smaller
than or of order 10, (see.Figure 3), departures from the dilute theory occur.
In fact, when comparing with the dilute theory, four universal regimes are
identified as the equivalence ratio, y, varies from very large values (fuel-
lean) to very small values (fuel-rich). In the first very lean regime, the
results of the two theories agree. In the second regime, evaporation is

completed before saturation but the ratio of the two evaporation times,

c°nd1/c°d1, is a function of 9. In the third regime, non-dilute spray theory
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predicts saturation before complete evaporation, whereas the dilute spray theory
predizts the opp:asit.'e. Finaily, in a fourth regime, both theories predict
saturation before complete evaporation but at ¢ Lffevent times and values of the
residual drop radius, Rj. In the first and the second regime, t®. 41 is a
decreasing function of ¥, wher~as in the third and fourth regime its becomes an
increasing function of ¥.

Although r~hese regime are believad to be universal, the values of ¥
separating them change as a function of the fuel and the initial conditions.
Thus, non-dilute effects can occur even at larger values than R = 10. For
example, non-dilute effects can be found even for very dilute sprays whan the
total mixture is rich. This is illustrated in Figure 4. When ¥ is constant and
the initial interstitial mass fraction of fuel vapor, Y%p,,. increases, the
cluster becomes more dilute and the liquid fuel mass decreases. Because of
this, the interstitial gas temperature, Tga, stays higher than at lower values
of Y%°p,a since less heat is transferred tc the evaporating dreps. Thus. as
Y°pya increases, two competing effects determine the rate of evaporation and
therefore the value of t®.4): Y%r,a is larger which tends to decrease the
evapvration rate, but TS‘ is larger as well which tendas to increase the
evaporation rate. The interplay between these two effects is such thav as YOp,,
increases from zero, the ‘vapor-pres ure effect dominates and therefore t®.4;
increases with increasing Y°p,,. 1In contrast, the dilute sprey theory predicts
that t®y; decreases monotonically with increasing Y%py,.

The results of Figure 4 are not directly comparable with those of Koshland
(11) because in those experiments, the oxidizer mass fraction and droplet
spacing were decreased independently. Here, as Y°p,, increases (and thus the

mass fraction of oxidizer decreases), the droplet spacing increasas because tie
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equivalence ratio is kept constant. However, since Figure 4 shows that t®,4; is
a very weak funct;on of YPpsa and since a decrease in droplet spacing results in
increasing t%yq] (see Figures 2 and 3) for complete evaporatiou before
saturation, it is expected that t®,4] increases when the cxidizer mass fraction
decreases while the croplet spacing is constant. This yilelds the s ie result as
that of HKoshland (ll) who found the burning rate decreasing with -decreasci
ambient oxidizer mass fraction. The results of the theorvy of Bellan and Cuffel
(37) also showed that the square of the normalized radius does not decrease
linearly with time, and thus the d?-iaw does not hold for interacting droplecs.

To improve the predictive abilities of this model some simplifying
assumptions of the above formulation were relaxed in Bellar and Harstad (40).
In particular the more realistic Langmuir-Knudsen kinetic evaporation .uw
replaced the Clausius-Clapeyron relationship, and the drop temperature was
consideced not only transient but a function of radial position.

The general idea of the model is to account for globai effects. Thus, even
though there is a net flow of gas and heat through the surface of the cluster,
thesa sffects are not modeled in detail, but only globally. In this particular
case mass and heat inflow or outflow through the boundary are «ssumed negligible
with respect to the mass and heat content of the cluster. The'results stow that
in fact this is a vorj' good approximation for nondilute clusters where
penetration of the clusters by surrounding gas is confined to a very thin snell.
On the other hand for dilute clusters where penetration is substantial,
convective flow effects are appropriately taken into account by correlations
relating the evaporation rate in convective flows to thoss in juiescent flow and
to the Reynolds number. For intermediate regimes of drop number densaity the

model is still expected to be a good giobal approximation. Consistent with the
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assumption of small pressure gradients, the exchange of momentum between drops

and gas is treated on u local basis and is considered to be due to: (i) transfer
Jue to evapora.ion, (ii) transfer by fluid flow interaction in the form of a

drag coefficient, and (iii) transfer due to small pressure gradients. The

ensuing momentum equations are

dur . 1 2
= - lm ur / pg + 2 1 + pg/(nmg) Ag Cp u‘y (2)
dug 1 o 42 nmy
_ - - - A Uy + ——— u Cpe Ac/N 3
d It 3 Pg 8d “D UW'r (g + ng) Pg Yg ud Cpe Ac/ (3)

where ur = uq - ug is the relative velocity between drops and gas inside the
cluster. m is the evaporation rate, n is the drop number density, pg 1is the gas
density, mq is the mass of one drop, N is the total number of drops, A, is the
transverse area of the cluster, A4 is the transverse area of a drop, and Cp and
Cpe are respectively the drag coefficient for one drop and the drag coefficient
for the cluscer as an entity. , These momentum equations are coupled toc the other
equations. Here Cp. is based upon a length scale [Ac(ug/ud)/ﬂo'5 and is a
function of the resultant 'Roy'nolds number only. In contrest, Cp depends both
upon Re and m. The dependenze of Cp upon Rp/R;, and thus the "blockage" effect
due to drops shielding other drops from the flow, is here neglected. The
Reynolds number is based upon ug. It is important to notice that these two
equations ylield the correct limits in the cases of not evaporation (m+0), no
slip (up + o), and quiescent ambient gas (u8 - 0).

Since the kinetic evaporation law and the equation of state form a nonm-

iinear implicit sat of equations for the pressure and evaporation rate, a
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predictor-corrector scheme is used to solve the entire sect of equations. The
drop temperature is solved as a four-term truncated series in powers of the
nondimensionel radial coordinate, z, and a GEAR integrator package is used to
solve the set of ODE's. For each integrator step, the iteration starts with the
prediction of -<the drop temperature. hen the equation of statz and kine:cic
evaporation law are solved using a Newton-Raphson iteration for the pressure and
evaporation rate. Next, the convective correction is applied to the evaporation
rate and finally the drop temperature is corrected. The iteration is repeated,
starting with the Newton-Raphson procedure, until convergence is obtained.
Thus, each time step reguires a nested double-loop iteration to calculate the
drop temperature, evaporation rate and pressure. The calculations can be
performed on a personal computer or on a faster computer if more speed is
desired.

An interesting quantity to calculate is the penetration distance of the
surrounding flow into the cluscer. This is done by following the cluster on its
trajectory and identifying this distance with tihe relaxation distance, which is
the distance travelled to the location where u,=0. Thus, Eq. (2) is rewritter

in Lagrangian variables and integrated. The solution is

2 1n [1 + u® pg(pg/mg + n) Ag Cp/(2mn)]

Lp - (4)

(pg/md + n) Ad CD

]

1f the ratio Lp/i. vhere R is the cluster radius, is larger than unity,
penetration i{s ilmportant and thus evapcration is controlled by convection. In
contrast 1if LP/E is much smaller than unity, evaporation is controlled by
diffusion. Eetween these two regimes there is an intermediate regime where both
convection and diffusion are important. In this intermediate regime, the

evaporaticn rate is very close to that in the convective evaporation regime
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since convective effects dominate diffusive effects during evaporation. Th{s is
illustrared in Fi;ure 5 reproduced from Ref. 40. Calculatious (40) of L?/i with
E;IO cm show that the diffusive regime correspond to the very dense (nzloscm'3)
ard dense (105cm'3 > nglO“cm‘3) clusters, whereas the convective regime
corresponds to dilute clusters (n < 103cm"3 ; ¢ > ¢g = 15.7 for n-decane where 4
and ¢ are the air/fuel and stoichiometric air/fuel mass ratio respectively).
Figure 5 shows that the evaporation time reaches an asymptote fast as 4
increases from the dense to the dilute regime. Additionally, this figure shows
that rhe model is not very sensitive to the drag model used, providing the drag
model accounts appropriately for the "blcwing" effect due to evaporacion. This
blowing effect tends to decrease the drag coefficient by comparison to the non
evaporation case.) The conclusion regarding drag modeling is valid for the
small to moderate range of relative velocities used 1in the calculation.
Furthermore, the plots of Figure 5 show that u®, is a relatively weak parameter
for controlling evaporation in both the dense and dilute regime.

The variation of the relative velocity of drops evaporating in clusters of
various initial equivalence ratios is shown in Figure 6. Figures 7 and 8 show
respectively the variation of the drop velocity and Reynolds number with
residual drop radius. Figure 6 shows that the relative velocity of a dense
cluster of drops decraases’ faster than does the relative velocity of a dilute
cluster. The opposite is true for the drop velocity, as shown in Figure 7.
This is due to the fact that when a dense cluster of drops moves through the gas
it exposes a greater surface area to the flow because at fixed R, the number of
drops in the cluster is larger. For this reason there is a stronger interaction

between drops and gas, and thus faster relaxation of up to zero. In contrast,

uq depends cn the inertial effect cf the cloud. Since a dense cloud has a
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larger mass, it slows down less than a more dilute cloud. Finally, we find that
the Reynolds number decreases very fast during the drop lifetime, in agreement
with the isola‘ted drop results of Dwyer and Sanders (44). These results also
show that in convective flows, the concept of cluster density is sctrongly
related to the value of the relative velocity between drops and gas. Dense
clusters quickly become "non-porous,” that 1ls, impenetrable to the outer flow.
In this case only the outer shell of drops is exposed to the flow. In contrast,
dilute clusters are "porous” and the ambient flow substantially penetrates into
the cluster.

The results of Bellan and Harstad (40) show that the drop temperature
becomes uniform very fast in dense clusters of drops {about 1% of the drop
lifetime). Additionally, as depicted in Figure 9 it is found that the drop
temperature also becomes quickly uniform even for dilute collections of drops,
although the heat-up time is now about 208 of the drop lifetime, and thus cannot
be ignored. This is to be contrasted with computational results for single
drops which showed that the temperature was staying nonuniform during most of
the drops lifetime (45). In agreement with the results of Ref. (45) Figure 9
shows that the drop temperdt:l‘xre continues to increase during the entire drop
lifetime for dense and dilute clusters of drops. It must be pointed out that
the results of Ref. (40) were obtained using a transient conduction equation to
describe droplet heating. This 1is justified because the ratio of the
characteristic time for circulation to the characteristic time for heat-up,
[22/(pg Cpa))/(Bg/Pp)], is of the order of 3x10°2. Here 2, Cp and u are heat
conductivity, heat capacity at constant pressure and viscosity, respectively,

and the subscript "£" refers to liquid. Thus, the heating time is indeed

independent of thke circulation time, justifying the use of the spherically-
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symmetric heat-conduction equation. Based upon these results, it seems
appropriate to ignore drop-temperature nonuniformities when one considers the
evaporation of‘dense clusters of (rops for single - component fuels. Thus it is
appropriate to use a one dimensional spherically symmetric model to describe the
evoluticn of the drop temperature, instead of the more sophisticated model of
Ref. (45). Since subgrid models should be computationally economical, because

they are to be incorporated into large and expensive macroscale codes, the use

of a simpler model could yield substantial computational savings.

2. Consta ure (V -V o)
2.A. Evaporation

While the models describe” above contribute to understanding the difference
between the evaporation of dense and dilute clusters of drops, such models are
not appropriate as subgrid models. The reazon for this is the lack of
appropriate boundary conditions at the macroscale level in order to describe the
interactions with the surroundings appropriately and self consistently. These
boundary conditions provide the coupling betwveen the microscale and the
macroscale and thus are crucial to a subgrid mcdal.

The models described next apply to clusters of drops thut are as large as,
or larger than the Taylor }ucroscale in a flow; that is, they are at least as
large as the largest dynamically significant eddies in the flow. This means
that, unless the scale of the computational grid is Jlarger than the Taylor
macroscale, the following models cannot be used as subgrid models.
Unfortunately, this means that if such models are incorporated as submocels, the

grid may have to be rather coarse and thus the calculations will lack detail.
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The development of sutmodels for a finer grid scale is an imporcant area of
future research.

In Bellan‘and Harstad (5) a model accounting for mass, species and energy
transfer across the surface of the cluster is formulated. In this model the
drops move with respect to each other and thus expansion and contraction of the
cluster may occur. Thus, in contrast to the models of References (37) and (40),
the drop number density becomes a time-dependen: variable, whereas pressure is
taken as constant. A pictorial representation of the situation studied is shown
in Figure 10a. In this formulation the gas density inside each sphere of
influence is no longer uniform, but becomes a function of the radial position in
the sphere. The model still keeps the previous basic features with
conservation equations for the drop and gas inside the sphere of influence,
global conservation equations for the entire cluster and the perfect gas law,
but there are two new elements here: (a) a model for transport from the

surrounding gas to the cluster, and (b) a model for the drop motion inside the

cluster that pertains to transport from the cluster to the surrounding gas.

2.A a. Transfer from the surrounding gas to the cluster.

Consistent with the assumption that the cluster size is much larger than
the size of the smallest dynamically impertant eddies, turbulent heat transfer
may be described using a Nusselt number approach. Further, similarity between
heat and mass transfer is assumad and thus Shy = Nu,. Because it is very
important to understand how the history of turbulence affects cluster behavior,
two turbulence models are considsred and cumpared.

In the first turbulence transfer model the drops do not act initially as an

entity, but rather as individuals and turbulence builds up with time if the
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cluster porosity, that is if u,, diminishes significantly. In the second
turbulence modeii the cluster surroundings are assumed to be {initislly
turbulent.

2.A.b. Transfer from the cluster to the surrounding zas.

Similar to the above, two models are considered here as well. In the first
model transport is represented using a "trapping factor" model for the gas
velocity at the edge of the sphere of influence (45) to calculate the mass loss.
The trapping factor is an interpolation coefficient between a strictly steady
gas phase limit where there is strong evaporation and maximum new vapor passes
through the sphere of influence (representing the dense case, mg << m4), and the
limit of null loss where all new vapor is trapped inside the sphere of influence
(representing the dilute case, mg << mg).

The second model for the drop motion inside the cluster (46) introduces a
similarity parameter, ¢ = ?/i. For a given drop, £ is a constant which varies
in the cluster betweer zero and unity. Whereas in the previous model drops and
gas were moving respectively with velocities uyg and ug in the axial direction,
now there is an additional radial velocity component, respectively £ dE/dt and
£ uge where Uge is the gas velocity at the edge of the cluster. Thus the radial
siip velocity at the edge of the cluster is uyp, = dR/dt - Uge - Note that on a
large length scale the evaporating drops form a uniform mass source density and
this is consistent with the similarity assumption. In this model, global
momentum equations for radial and axial velocities are formulated in a manner
similar to Bellan and Harstad (40); unlike in Reference (40), § now appears in
the momentum equations. In general, the mumentum equations are consistent with

similarity with the exception of aonlinear drag and convective derivative terms.

To be consistent with the other global equations where the radial dependence
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does mnot appear, average equations are formed by integrating over ¢§. This
eliminates some é;upling between axial and rudial velocities due to convective
derivative terms, and also means that the tendency of nonlinear drag to destroy
the self similar radial motion is neglected.

Figure 11 reproduced from Bellan and Harstad (47) shows a comparison
between the prediction of the four models. These models arve listed in Table II.
In the dilute cluster regime there 1is excellent agreement between the
pradictions of all four models because evaporation of drops in this regime is
not controlled by transport processes. In contrast, in the dense cluster regime
transport processes control evaporation, resulting in substantial quantitative
disagreement among the results of the four models. Qualitatively, the
predictions should be similar: teyap reaches a maximum in the dense regime and
decreases as ¢ decreases. The cluster is initially denser, and eventually
saturation is obtained before complete evaporation. Thus, validation of dense
cluster or dense spray models requires erperimental results precisely in this
large drop number density regime.

The models of References (5) and (47) also predict that in absence of
internal vortical motion insids the cluster, dense clustars will first contract
due to internal gas cooling and then expand due to turbulent transport of hot
external gas inside the cluster. The stronger is the turbulent transport and
the smaller is the cluster, the smaller the contraction and the .arger che
recovery towards the original size. In general, it seems that clusters do not
recover their original size by the time the drops have evaporated. Tocal fuel-
mass loss from clusters turns out to be very small for large clusters of drops,

but increases substantially for small clusters of drops (47). The accurate

prediction of this quantity is crucial for dense clusters of drops because
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ignition is expected to occur ocutside of the cluster (48) and it is precisely

this ejected fuel vapor which ignites to establish a flame surrounding the

cluster.

<

2.B. Ignitio u

The prediction of droplet ignition in clusters 1is very challenging from
many points of view. In power generation systems, clusters of drops are exposed
to convective flows that sweep fuel vapor ejected from the cluster into the wake
regime behind the cluster. Thus, ignition will be a result of the interplay
between transport processes from the cluster to the surroundings which bring the
fuel vapor from the interior to the exterior of the cluster, convective effects
outside of the clusters which sweep the fuel vapor into the wake regime, and
chemical kinetics. This interpretation is in agreement with the experimental
results of Sato et al. (5C). The authors (50) infer from their experiments that
ignition occurs at the stagnation point of the tip of the fuel spray. The
ignition Jelay is due to the interplay between :wo effects described by two
characteristic times. The first effect 1is convection, and thus the
characteristic time is that spent for reducing the velocity gradient at the
spray tip below a critical velocity gradient at which ignition occurs. The
second effect is chemical kinetics, and thus the characteristic time is that for
ignition (that is chemical run-away) to occur at a given velocity gradient.
Sato’'s conclusion is that in their particular experiment the latter time is much
smaller than the former, and thus chemistry dominates ignition delay times. In
other experiments convection effects might dominate chemical effects. This
picture is very different from that of the jgnition of a single, isolated drop
in quiescent surrsundings or even that of single-droplet ignition in a

convective flow (49;.
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It 1is imporﬁfnc to notice that in cluster ignition, coavective effects are
important. If the cluster is dilute, the effect of convection arcund each drop
will be import:‘anc. If the cluster is dense, the convective effects around the
drops located on a shell at cthe boundary of the cluster will be important
because outer flow penetration is confined to this shell. The denser the
cluster is, the thinner will be the shell.

The experimental observation of thin flames surrounding clusters of drops
(2, 3) suggests that it may be reasonable to describe ignition and combustion
using the classical flame-sheath concept (8). This means that instead of using
a chemical kinetic approach to ignition and combustion, an ignition criterion
combined with a flame-sheath approach might be used instead.

Such an ignition criterion was developed by Bellan and Harstad (48). To
predict the ignition location, a two dimensional map is built to compare
convective and diffusive effects. The convective effects are measured by the
extent of flow penetration into the cluster, quantified as the ratio of the
penetration distance to the radius of the cluster. If this ratio is much
smaller than unity, evaporation and thus ignition is diffusion controlled.
Therefore the ignition location can be identified using the criteria developed
by Labowsky and Rosner (26) for quasi-steady combustion to determine whether
particles burn individuaIly or collectively. Moreover, in this’ diffusion-
controlled regime, the ignition timing is predicted using a Damkchler number
criterion which compares characteristic diffusion and reaction times. This
Domkéhler number criterifon is valid only for diffusion-controlled situations,
and thus the corresponding ignition criterion is valid only for nondilute
clusters of drops exposed to a moderate to weak convective flow. When the ratio

of the penetration distance to the cluster radius is of the order of, or much
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larger cthan unity, evaporation is respectively ronvection-diffusion and
convection contrglled. Since convection effects are always stronger than
diffusion effects, the role of convection must be important during ignition. It
is this author’s opinion that a field computation, taking into account both
convection and chemical kinetics is necessary to determine the ignition time in
these situations. Ignition criteria similar to that of the Domkohler number,
but also involving the Reynolds number for a single, isolated drop, would be
irrelevant to cluster ignition, except for very dilute clusters. Such criteria
cannot take into account the very important transport processes between the
cluster and the surroundings. Bellan and Harstad (48) show that ignition of
nondilute clusters of drops invariably occurs external to the cluster, and that
the boundaries between the diffusive, convective-diffusive, and convective
regimes defined above are functions of the fuel and the iwnitial conditions.

Using the above model of cluster ignition, Bellan and Harstad (51) have
formulated a model of nondilute cluster combustion. In this model, fuel
evaporated from the drops is ejected out of the cluster at a rate determined by
thie balance of transport processes across the boundary of the cluscter. After
ignition there is a very short-lived, weak, premixed flame depleting all oxygen
inside the cluster which is followed by a thin, counterflow diffusior flame.
One crucial aspect of this combustion model is that the burning rate is not
equal to the evaporation rate, in agreement with the experimental results of
Koshland (11). Also, the flame temperature depends upon the cluster parameters
unlike ir the work of Correa and Sichel (25).

Figure 12 reproduced from Reference (51) shows the fraction of fu~! burnt,

fg, at ignition and at the moment of drop disappearance for the weak and strong

turbulence models described above versus the initial air/fuel mass ratio. As
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experimentally observed by Koshland (11), there is still a substantial amount of
fuel vapor left l.:c burn when the drops disaprear. Figure 13 shows the ratio
between the fraction of fuel burnt and the fraction of fuel lost, fg/fry, when
R=0 versus ¢° for the same conditions as those of Figure 12. When the cluster
is initially denser (smaller ¢°'s), this ratio is smaller because more fuzsl is
ejected from the cluster, making the flame stand further from the cluster.

More vigorous fuel evaporation and fuel loss, and shorter evaporation time,
explains why the ratio between the flame radius and the cluster radius, Ef/i, is
larger for turbulence model 2 than for turbulence model 1. This results in
smaller values for fp/fpy when turbuience is strong (turbulence model 2) than
when turbulence is weak (turbulence model 1).

In all calculations carried out with this model, varving parametrically the
inicial cluster size, the ambient gas temparature and the initial drop
temperatures, the flame establiches itself very close to the cluster boundary
and ﬁf/ﬁ is at most 1.01. During burning Rf/ﬁ varies but never exceeds 1.01.
This is in complete agreement with the experimental observations of Allen and
Hanson (2, 3) and Nakabe et al. (4) for "pockets" of drops.

The restricted range of initial air/fuel mass ratios investigated with this
model corresponds to the range of moderately-dense clusters. For larger values
of ¢°, the gas phase inside the cluster becomes lean at ignition. The present
model is limited to describing combustion after ignition when the gas phase
inside the clcster is rich. For smaller values of ¢°, the clusfter bacomes very
dense and ignition does not occur befors the drops disappear. This means that

burning will occur in presence of the gas phase oniy, a situation that the

presert model does not treat properly. In this lattsr situation turbulence
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effects and flame wrinkling become dominant, and these phenomena are not modeled
here.

Figure lk: reproduced from Reference (51) shows that smaller clusters of
drops are more efficient at burning fuel, a fact which agress with intuition.

2.C. Evaporation and DRispersion of Electrostatically Charged Drops

It was mentioned in the Introduction that scot production is a strorg
function of drop proximity, increasing as the drops get clcser and trap the fuel
rich gas between thea where soot formation reactions occur. Calculations based
upon a simple model of electrostaric drop dispersion carried out by Bellan (52)
indicated that electrostatic drop dispersion might be a viable concept for
rendering clusters more dilute and thus controlling soot production. Recently,
a more realistic model of evaporacion of electrostatically charged drops has
been foruwulated by Harstad and Bellan (46), and some of the results obtained
with this model are presented below in order to illustrate another aspect where
there is a difference of benavior between dense and dilute clusters of drops.

The model describing electrostatic dispersion and evaporation {3 the same
as that of Bellan and Harstad (47) with the further addition of the charge
effects. The radial electric field and electrostatic force are taken
proportional to the similafity parameter £ defined earlier. Both momentum and
energy equations take irfto account these effects which are averaged by
integrating over £. Figuras 15, 16 and 17, reproduced from Reference 46, show
respectively the evapcratlon time and the volume ratio (firal volume/initial
voluze) versus the i(nitial air/iuel mass ratio for various charge ratios, as
well as the evaporation time versus the charge ra:io for a aense cluster of

drops. The chavge ratio is the charge divided by ti.e maximumx charge feasible

for a given Jdrop size (53). Az seen {n Figure 15, only dense cluste: are
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affected by drop charge. The charge acts to expend the cluster into the hot
ambienc alr, as ;een in Figure 16, thus promoting evaparation. For dilute
clusters the electrostatic forces are too weak to produce any significanc
expansion. ‘

Some of the results discussed above, together with the results illistrated
in Figure 17, show cthat the predicted evaporation time does not depend upon
turbuience models for ncndense clusters of drops, independently of whether the
drops are charged or uncharged. In contrast, the turbulence models can greatly
affect the predictions for uncharged dense clusters of drops (5, 47). This i;
due to the restricted available thermal energy for evaporation in the relatively
smrll interstitial region of dense clusters, along with comrdrative isolation
from the hot ambient gas. For uncharged dr~ps, cnly turbulence can break this
isvlation, whereas for highly charged drops, charge-lnduced expansion dominates.
As seen in Figure 17, for drop charges greater than half the value proposed by
Kelly (53), the evaposration tiwe is independent of the turbulent model. In
rigures 15-17 the svaporation time is that obtained at R}y = 0.3 which is the

value close to that at which Rayleigh irstability occurs. The calculations are

stopped at this point thus aﬁoiding the modeling of the snsuing drop breakup.

V. CONCLUSIONG ’

The modals and results presented in Sections II ani III underscore che
difficulty of formulating appropriste subgrid models for use in computaticually
intensive ccdes that could describe a variety of combustors. The difficulty is
assoclated with the many phenomena involved, some of which are important only in

limited regimes. However, since subgrid modals must be rslizble osver a wice



range of physical situations, it 1is important to account for all chese
phenomena. )

The computational and experimental results obtained so far show that dense
and dilute collections of drops be'a . 'c.y differently. For dense clusters of
drops, the numerical results show that the initial turbulence level of the
surrounding flow is crucial in determining the evaporation time and the dynarics
of the cluster size. This is due to several interactions factors. In the
absence of vortical motion inside the cluster, any initial relative wvelocity
between drops and gas inside the cluster decays very fast to zero and thus
relative convecticn effects primarily enhance evaporation initially. The
int~rnal temperature of the drops increases rapidly, becomes uniform very fast
compared to the drops lifetime, and continues to increase during the entire
evaporation time. The energy thus transferred from tae gas phase to a
relatively large quantity of liquid, particulary in the absence of turbulent
mixing with large volumes of hot gas, cools the gas very rapidly during this
initial period and the cluster size decreases as a result. The turbulent
tran.fer of heat and mass from the am. ent to the cluster can significantly
influence evaporation. If tuis transfer is vigorous, evaporation continues and
the cluster s5ize increas.'s rather than decreases. In the absence of turbulent
mixing saturation may occur before complete evaporation. i

In cortrast, the evaporation of dilute clusters of drops is not controlled
by cturbulencs. In dilute clusters the energy transferred from the gas to che
drops has a negligible impact upon rhe total energy content of the gas. Thus,

in the absence of internal vortical motion the cluster size stays nearly equal

to itcs initial valuz. Both the relaxation time of the rula:ive velocity between



drops and gas insids the cluster, and the time taken for {nternal drop
temperature to be;ome uniform are comparable to the drop lifetime.

The above results have direct bearing upon the validation of such subgr.d
models usirg cowparison with experimental observations. They show ihat results
obtained only from dilute portions c¢f a spray are inappropriate to use for
comparison because they cannot take into acccunt the importance of the transport
phenorena which are crucial i{n the dense regions of the spray. This s
especially important for the subgrid models since, as pointed out here,
appropriate boundary conditions for the microscale cf rhe computation are
critical in order to couple to the macroscale. It should be noticed that the
models presented here are not truly appropriate as subgrid models, except for
calculations vhere the macroscale cf the system is larger than or comparable to
the Taylor macroscale. Modified approaches must be used to mathematically
describe situations where the Tayler microscale and the cluster size are of the
same order of magnitude.

The above considerations of spray and cluster ignition have shown that
there is still a considerable uncertainty regarding the description of this
phenomenon, even qualitatively, at the microscale level. The difficulty arises
because in practical systems ignition is always contreclied by convectien. For
dense clusters of drops fgnition occurs outside the cluster where convective
«ffects are important. For dilute clusters of drops ignition might occur inside
the clustar. Since the relative velocity between drogs and gas has a
characteristic relaxation time comparable to the lifetime of tlic drop in this
case, convection effects are important again. Thus, it ap;cars thus that it

would be necessary to solve difforential equeti:ns ta . ng into account both

convection and chemical kinetics at the microscale level. Clearly, a simpler
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method is desirable, making this an area where new strategies definit-ly are
needed to deal .;ich the situation. It should be pointed out that this
discussion is relevant not only to the mathematical description of ignition, but
also to flame stability.

Cluster flames cannct be either quasi-steady or thin just after ignition.
However, the flame sheath approximation still seems to be a useful concept which
qualitatively describes flames around clusters, providing one accounts properly
for transport processes to and from the cluster and does not make the assumption
that the burning rate equals the evaporation rate, When the flame sheath
concept is properly incorporated into a model, this model yields two important
results: 1) taat rhe flame sits just at the periphery of the cluster, and 2)
that the drops disappear well before the entire fuel vapor is burnt. Both these
results are in complete agreement with experimental observations.

Finally, although numerical methods have not been discussed here in detail,
they are a very important component of these two-level (macroscale-microscale)
models and are expected te become evel more important once these subgrid models
have to be incorporated into the macroscale calculations.

Most present large scale codes are based upon the assumption that the
volume element does not change in size and that the pressure is variable within
the wvolume (54). Langrangian calculations, where the volume does change, are
also occasionally performed, but their implementation in multidimensions
requires much more effort (54). Typlcally, all large scale codes solve
nonlinear, coupled mass, species, momentum and energy equations using a variecy
of techniques. In unsteady codes, the solution is obtained by iterating several

times at each time step until convergence of the nonlinear and of the coupled

terms is obtajined.
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Since clusters of evaporating drops change their volume during the drops
lifetime, even in the absence of internal vortical motion, it seems that the
Langragian cod?s are physically much more appropriate to describe the macroscale
in this two-level (macroscale - microscale) description. The Lagrangian
description also offers the advantage of the simplest boundary conditions at the
surface of the cluster. These boundary conditions couple the microscale to the
macroscale and they describe transfer of mass, species, momentum and energy
across the surface of the cluster. The density, composition, temperature and
velocity field of the gas surrcundings the cluster must be provided at each time
step iteration by the solution of the macroscale equations. The motion of the
cluster surface is given by the solution of the global conservation equations
for the cluster. In the Lagrangian description the cluster has an identity
because it contiins the same drops throughout the calculation and the volume of
the cluster is defined as the volume contained inside the envelope of these
drops.

In contrast, in an Eulerian calculaticn a fixed volume element cannot
represent the same drops throughout the calculation, and thus the cluster
representation is no longer meaningful. In the Eulerian representation drops
move between volume elements and thus consarvation equations for the number of
drops in each volume alement are additicnally needed. Moreover, the boundairy
conditions at the fixed surface of the volume element have to include now terms
representing transport of drops, gaseous mass, spacies, momentum and energy
required to keep the voluze constant. Similar to the microscale-macroscale

coupling at each time step iteratien in a Lagrangian code, the macroscale

Eulerian code must alsc provide the density, compcsition, temperaturs and
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velocity field of the gas surrounding the cluster for coupling with the
microscale calculgtions.

The present calculaticns (5) of cluster evaporation, ignition and
combustion are ;ather inexpensive. In average, less than 10 sec. of CPU time is
spent on a UNIVAC 1100 to calculate the entire history of the cluster for a
given set of initial conditions acd fixed values of the density, composition,
temperature and velocity field in the gas surrounding the cluster. The model
and code are fiexible enough to allow the use of more realistic boundary
conditions and to be coupled to a macroscale code. The fical cost of a code
based upon the two-level description will be determined by the macroscale code

and by the efficiency with which the microscale code is coupled to the

macroscale code.
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area, cm?

radius of the sphere of influence, cm
cluster transverse area, cm?

drag coefficient for one drop

drag coefficient for the cluster of drops

heat capacity at constant pressure, cal/g°K

mass of fuel burnt between ignition and drop disappearance/total fuel
mass

mass of fuel lost from cluster from t=o tuv drop disappearance /total
fuel mass

effective heat of evaporation at normal boiling point, cal/g
penetration distance, cm, Eq. (4)

evaporation rate for one drop, g/(cm2 sec)

mass, g

drop number dansity, em”3

number of drops

Nusselt number for the cluster

cluster characteristic length (radius, if cluster is spherical), cm
radial coordinate centered at the dr)p cluster, cm

radial coordinat: centered at the cluster center, cm

radius of drop, cm

2Rug/v

radial location of the tlame measured on the ¢ coordinate, cm
R/R®

a/R®

Shervood number for the cluster
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temperature, °K

time, sec
velocity, cm/sec

z

cluster volume, cm3

mass fraction of speciss i

r/R
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SUBSCRIPTS

0.3 instant when Ry = 0.3
a at the edge of the sphers of iInfluence; .nterstitial
d drop

dl dilute

evap evaporation

F fuel

g gas

ndl nondilute

r relative

v vapor

SUPERSCRIPTS

o initial

o in the far field
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GREEK SYHBOLS
v kinematic viscosity, /p, cmz/sec
¢ alr-to-fuel mass rario

-

bs stoichiometric value of ¢

¥ equivalence ratio ¢/dq

P density, g/cm3

8 nondimensional temperature CpT/Lpp
3 similarity parameter

188



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1

10

11

12

13

14

FIGURE CAPTIONS

Pictorial of drops in a cluster surrounded by fictious spheres of
influence.

Variation of tp41/t®q) with ¥ for a constant volume,
adiabatically insulated cluster of drops.

Nondimensional radius of the sphere of influence versus ¥.

Variation of t®,41/t®41 and t®,4] with Y%, for a constant
volume, adiabatically insulated cluster of drops.

The evaporation time versus ¥ for,K several initial relative
velocities and several drag models. R=10cm.

Variation of the relative velocity with residual drop size for
several ¢'s. R=10cm.

Variation of the drop velocity with residual drop size for
several ¢'s. R=10cm.

Variation of the Reynolds number with residual drop size for
several ¢'s. K=10cu.

Nondimensional drop temperature versus nondimensional radial
coordinate in a drop for a dense and dilute cluster of drops at
several residual drop sizes. R=10cm.

Pictorial of the two different models for describing the drop
motion inside the cluster.

The drop evaporation time versus ¢  for four different models
describing transport from and to the cluster of drops.

The burned fuel fraction versus ¢°.
- at ignition

- at drop disappearance, turbulence model 1
- at drop disappearance, turbulence model 2

b eo

Ratio of the burned fraction to ths fraction of fuel that escaped
the cluster, evaluated at drop disappearance versus ¢° for two
models of turbulent transport to the cluster. The similarity
model was used to describe the drop motion inside the cluster.

The burned fuel fraction versus K°.
0 - at ignition

® - at drop disappearance, turbulence model 1
A - at drop disappearance, turbulence model 2
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Figure 15 Time for drops to evaporate to 30% of their i{nitial radius versus
#%-for null and various finite charge raties.

Figure 16 Volume ratio at ty 3 versus ¢° for null and various finite charge
ratios.
Figure 17 Time for drops to evaporate to 30% of their initial radius versus

the charge ratio for two turbulence models.
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HEAT IN

MASS OUT
(a) THE "TRAPPING FACTOR" MODEL
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TRANSFER eR
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TRANSFER
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ELECTROSTATIC FORCE IF THE DROPS ARE CHARGED
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ABSTRACT

The hehavior of evaporating clusters of drops embedded into large, coherent
vortices is described using a formulation which is valid for both dense and
dilute clusters. Drops and gas interact both dynamically and thermodynamically.
Dynamic coupling occurs through a force on the drops due to drag resulting from
a slip velocity between the two phases. The net interaction force on the gas
with drops is due to a source thrust from evaporation plus drayg on each drop.
The orag coefficient accounts for blowing from the drop surface. Thermodynamic
coupling is a resu't of drop heating and evapuration. Limitations due to drop
proximity on heating and evaporation are taken into account.

The vortical motion of the drops in the cluster results in the formation of
a core region devoid of drops at the center of the vortex, and a shell region
containing the drops and surrounding the inner core. Results are presented
showing the dependence of the evaporation time, the final to initial volume
ratio and the final to initial shell thickness ratio upon the initial air/fuel
mass ratio and as a function of the initial tangential velocities, upon the
inttial Stokes number, initial drop radius and initial outer cluster radius.
Differences 1n behavior between and control parameters of dense and dilute
clusters are pointed out. It is found that for dense clusters the final to
initial volume ratio and final to initial shell thickness scale with the initial
Stokes number.
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[. INTRODUCTICN

Liquic fuel sprays are compused of many regions which are distinguished by ths
important phenomena influercing the fate of both _as and drops. As the drops exit
*he atomizer, the drops which are in the spray core penetrate the cas phase and
intera with small scale turbulent eddies before they vaporize and burn. In
contrast, the drops which are at the edoe of the spray get entrained into the
larger scale vortical structures produced by the shear layer betw.en the spray ard
the surrounding gas, and their fate is closely related to that of these larger
eddies. This physical picture emerges from the recen’ experiments of Lazaro and
Lasheras(1:2) who observed a plane, two-dimensional, turbulent mixing layer formed
hetween a one-dimensional, uniform liquid spray and a stagnant air flow. These
experimentail observations showed that the larger coherent vortices at the edge of
the spray play a critical role because not only do they control the entrainment of
air into the spray, but also they determine the drop number density and size
distribution throughout the mixing region. As the particles are entrained into
these eddies, they are centrifuged to the outer part of the eddy leaving behind a
core devoid of particles. Similar observations of particle dispersion in plane
mixing layers have previously been made by Kamalu et. a1.(%)

The mathematical modeling of evaporating particles dispersing in large,
coherent vortices is a challenging task due to the many coupled phenomena involved.
The drops moticn is coupled to the gas motion, although to which extent it is stil]
not known(4). Crowe et al.(4) point out that the coupling between particles and gas
is a function of the Stokes‘number, St, which is a ratio of the aerodynamic time
and the fluid time. If St>1, the particles exit the vortex and do not interact with
it. If St<<l, the particles follow entirely the gas motion. If St-0(1}, the
particles have enough time to interact with the gas and eventual relaxation of the
slip velocity between phases occurs. Cleariy, there are other factors, such as

pa-ticle number density and evaporation effects, which also influence the particle-

fluid interaction.
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Most existing models have so far addressed the situation of dilute and/or noh-

evaporating particle dispersion in large vortices. Such models can be found in
Chung and Troutt(s), Lazaro and Lasheras(z), Yang(s) ard Yang and Sichell’).
However, recent experimentai results irave revealed that particies ciuster in a
spray and that these clusters can he both dilute and dense(8:9). In fact, flames
have been oobserved in sprays around clusters of drops(10:11) rather than indivi-
dual drops suggesting that the dense clusters of drops injected by the atomizer
persist in their dense configuration during burning.

In contrast to the existing mode1s(5‘7), tre presont medel of particle
d’spersion in large coherent vortices describes evaporating drop clusters th-: can
re either dilute or de3ise. Thus, one can identify the different behavior of
initially cense and initially dilute clusters of drops, and determine the
ccntrolling factors for evaporation and dispersion in the two different cases.

I1. PHYSICAL PICTURE AND MODEL

Figure . depicts the configuration which is modeled here. A cylindrical
cluster of singie-component fuel, uniformly distributed, monosize drops of radius R
1s embedded into a cylindrical, infinite, vortical structure. Uniformity is assumed
in the axial d .rection, z, so that an axial, two-dimensional section is representa-
tive of the configuration. Uniformity is also assumed in the azimuthal direction,
5. There are no body forces, the pressure, p, is atmospheric and the far field
conditions (subscript "«") are given.

Both drops and gas have radial and azimuthal velocilies, respectively ugp,
Ugr. Udg and ugy, which a;;.functions of time, t, and the radius, r, from the
vortex center. The boundary of the cluster is the envelope of the drops which
becomes ir. the two dimensional representation of Fig. 1 an inner, §in(t)' and an
outer, ﬁ(t), boundary. The inner surface develops with time as a result of the
centrifugal force created by vertical motion. Inside the cluster each drop is

imagined surrounded by a fictitious sphere of intluence whose radius, a, is the

half distance between the centers of two adjacent drops(lz) Thus, the volume of



the cluster, V, is that of the spheres of influence and the space between the
spheres of influence. The liquid in each drop has a temperature Ty which is a
functicn of t and the radius from the drop center, rq. The gas inside each sphere
of influence has a density sq and temperature Tg which are both functions of t and
rq. The composition of the gas inside the sphere of influence is given by the mass
fraction of the "j" various compounds, Yj(t.rd). At the edge of the sphere of
influence the gas temperature, density and mass fractions are respectively Tga(t),
;ga(t) and Yja(t) which are also the uniform values in the spaces between the
spheres of influence. Thus, whereas the velocities of drops and gas are functions
of (t,r), on a large length scale equivalent to many drop radii the cluster is
assumed spatially homogencus in thermodynamic quantities. This assumption i¢
consistent with the goal of describing the cluster behavior globally. Consistent
with the monodisperse assumption, the drop number density, n, is independent of r.

The equations for the drops, the gas and the globa1'c1uster equations are:

A. Drops. In Eulerian coordinates the conservation equations are:

(i) Continuity.

4n A =
St + = v (Y‘ n Udr) 0 (1)
(ii) Momentum.
mg | 2%dr 4 ugr Ydr - 1 uZg, ] - Far (2)
L at ar r
mg | 2Yde 4 ugr 248 4 1 udr Ugs ] - Fds (3)
| at + ar r

where.Eh- -0.5 pg Ag Cp|us|Us is the force on the drops, Fqp and Fgy are its compo-
nents, Ayq is the drop cross-sectional area, (p is the drag coefficient, my is the
drop mass, and U;-GE-G& is the slip velocity where ug and Ga are drop and gas velo-
cities respectively. As a result of the previous assumptions, mq is independent of
r. Cp accounts for surface blowing from the drops(13’14).

(iii) Tq is found by solving the liquid conduction e..ction coupled through
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the boundary conditions with the equations for the gas inside the sphere of inf]ﬁl
ence(14,13). The gas inside the sphere of influence obeys the ideal gas law(l4,15)
(iv) The Langmuir-Knudsen law is used to describe evaporation(14).
B. Gas In Eulerian coordinates the conservation equations are:
(i) Continuity

apg l d .

where me - dmq/dt is the drop evaporation rate.
(ii) Momentum. The flow is considered inviscid, consistent with the high

keynolds number situations treated here.

[ du su 1 ap
gr gr
‘9 | Tt T T T Vo ] f o for %)
( 8u99 du 8 1

where ?;=n(5+0.SpgAdCD|G;|)U; is the force exerted on the gas; Fgy and Fg, are its
components. Eq. (S5) determines the dynamic pressure which is the very small
deviation from the constant thermodynamic pressure. Since it is assumed that the p
is constant Eq. (5) is not used.

(ii1) The ideal gas law is used.

C. Global. The global conservation equations for the cluster are transient
and account for phase change and contributions due to transport across the cluster
surface(s). There are two types of boundary conditions which occur at the cluster
outer boundary (subscript "0") according to the sign of F(r)-an(udr-ugr): (a) if
FouF ()20, then Tgg=Tg. and Yjp=Yje, and (b) if FyF(R)<O, then Tgq=Tg, and
Yio=Yja- At the inner boundary, (subscript "in"), Tgin=Tga, and mass and fuel
exchange across that boundary are due to fluxes pgFin and rqYFvFin respectively,
where Fin'F(Ein)' subscript "Fv" denoting fuel vapor. Thus for the core the global

continuity equation is

¢ (xR%in sg) = og Fin (7)



and the fuel vapor conservation equation is

%E ("Ezin Pg YEve) = fg YFV Fin (8)

where Yg,. is fuel vapor mass fraction (assumed uniform) in the core and Y, is an
average vaiue of Yg, in a sphere of influence. The cluster gas mass, air mass, and

enthalpy are derined respectively as

|
[
Nmg = 2xN J pg r dr + (S - xalN) 5g, (9)
R
d
R
d
R

where N is the number of drops per unit vortex length, Cp is the gas nheat capa-
city at constant pressure, the reference temperature is zero and S-x(EZ:ﬁzin).

Under the assumption of a very small Mach number the global conservation equa-

tions are
dmg e |
dmair  rga Iruge
" = —K— [(1 - Yryo) Fo - (1 - Ypya) Fipl + N sc (YFva = YFve) (13)
d md . Cp (Tga - Tgs)
— | Hg + — < ulpy | = Cory Tas -
at [ gtz Ve ] " { PFv '9s ~ S CClZ(RY - IRy -1 [ ¢
Cp rga 2rug

" €y (Tqe - Tqa)

—N—— (Tgo Fo - Tga Fin)+
where C-ﬁ/[4n(pg 0)e R°], Ky is the gas viscosity, Sc is the Schmidt number, Pr is
the Prandtl number, D is the diffusivity, Tgs is the gas temperature at the drop
surface, < >, denotes a radial average, RI-R/R0 (superscript "0" denotes initial
conditions), Rz-a/Ro and

Ry dy

- «0.65
2(y) = (og") J oo (15)
y
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with yard/Ro and 8=Cp Tg/Llps, Lpn being the latent heat of evaporation at the
normal boiling point. The details of the solution for Tg(t,rd) involving the
function Z(y) are explained alsewhere(15). In all the calculations Sc=Pr=0.8 was
taken. Vortex stretching is not considered, hence N is constant. By definition
St=25 ;R2<ugg>r/ (IugR) -
III. SOLUTION PROCEDURE

A slip relaxation frequency is defined vs=rg Ag Cp |U§|/(2md) which is indepen-
dent of r when Req <<l (Stokes regime). For larger Req, consistent with the present
global approximation, vg is averaged over r.

The velocities are taken to have the following functional form:

Aik(t)

ujg (t, r) = +r Big(t) + r3q Cik(t) (16)

where i=d,g; k=r,¢; q=0 for k=r; and g=1 for k=4. In Eq. (16), Ajx's are the
irrotational part of the solution resulting from a line vortex, Bjk’s represent the
solid body rotation or spin and Cjk’'s represent a distortion. A solution is sought
for which there exists a self-similar radial drop motion with the similarity
parameter 5-(r2-iéin)/(ﬁz-ﬁhin) which is fixed for a given drop. Additionally, the
radial drop momentum equation is averaged by taking its first two moments with
respect to ¢. Thus, whereas the tangential velocities are solved for exactly, the
radial drop velocity distribution is solved for approximately. To solve for the
velocities, their functional forms are replaced into the azimuthal equations which
are now transformed into polynomials in r whose coefficients are then null. This
gives nonlinear, coupled, ODE’s for Ayy’s, Bik’s and Cji’s. It turns out that if
05 /s=0 then Cyx(t)=0 which is the choice here. Agr and By are determined
algebraically from boundary conditions and consistency considerations.

The given initial conditions are: ¢°, the initial air/fuel mass ratio, RO, Eb,
~
RO ns Togs, Yojs, Toga-Tg,, Yoja-Yj., Ay ’s and BOy)’s. Due to lack of experimen-
tal data regarding velocities of gas and drops in large vortical structures the

choice was made to take A;,=B%;.=0 so that the drops have initially only tangen-
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tial velocities. The dependent variables for which solui-o~s a» rfound are: n(t),
1), ugr(tr), ugr(tir)s ugg(t,) ugg(t,m), R(E), Rin(t), 1g5(t), Tqalt), pgalt),
Yis(t), Yja(t) and R(t). Solutions obtained on a UNIVAC 1100 require in average 4
sec of CPU time per solution, the computation ending when Ry = 0.04.
Iv. RESULTS

A1l calculations for which results are presented here were performed for n-
decane. The vaiues of the physical constants used in the calculations are given

elsewhere(14)

. The specified far field conditions are p=latm, Tg, and Yj,.

A substantial number of calculations were performed. General observations show
that the short time behavior of the solution is dominated by relaxation of the
initial conditions. This implies that quantative agreement with experimental obser-
vations requires correct initial conditions since it is during this initial period
that most mass is evaporated. The long time behavior shows generally weakly varying
Yj’s. pg> Tg, n, and sometimes Agk and ng, and also a self similar variation of
both the 1liquid/gas mass ratio and with R;. This implies that perhaps some
correlations could be extracted from these calculations for usage in large codes.

According to the discussion of Crowe et al.(4) st0 was chosen 0(1) or less to
insure that the particles stay confined to the vortex. Figure 2 shows the evapora-
tion time, teyap, versus 0 for four choices of initial velocities made to pur-
posely delineate the separate effects of vortex and spin motion. The range of FUEN
goes from an initially dilute cluster corresponding to stoichiometric conditions
for n-decane (¢=15.7) to a dense cluster of drops at an equivalence ratio ¢°-¢°/
45=0.01. For two choices of“initial velocities (BJg,=B04y=0; B0gy= 2804,=103 sec!)
the calculations could not be performed for ¢°-0.01 because saturation occurred
before complete evaporation. This emphasizes the importance of the initial spin
motion in the dense cluster regime. Bod, turns out to be more important in this
regime than Bog,. In the dilute cluster regime the reverse is true. A comparison

between the results of Fig. 2 also shows that Ay, and Bog, affect evaporation in

both dense and dilute regime. As ¢° decreases, two regimes appear to exist. When
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8051, tevap is not a strong function of 60, but as 40 decreases, the gas

temperature decreases, the total vapor fuel loss from the cluster decreases and

Yryc increases while the cluster expansion also increases. If B0y, 0 and Bog, »0,

the mass loss from the cluster decreases as ¢0 increases, whereas when s°d,-s°dg-o

increasing mass gain occurs. When ¢Qsl, tevap increases substantially and is a

strong function of the initial velocities. For the first 1-2ms (R;<0.8), n

decreases sharply as the drop velocity angle from the tangent increases from zero
to its maximum; this maximum increases as ¢0 decreases. The largest maximum angle,

520, is obtained for the run where numerically Aog,-B°d9-2A°d,-ZB°g&-103. Ouring
this initial period, n relaxes tc 0(104cm'3) which means physically that for this
size of drops and velocities, a vortex cannot support a cluster of larger n without
disintegrating. The ratio of the final to initial volume ratio, Vf/VO, also
depicted in Fig. 2, increases with decreasing ¢° because as there is more liquid
mass in the cluster, the centrifugal force is 1arger; and thus there is more
expansion. The illustration also shows the importance of Bodo and Boge. For
B°d9=8099=0, there is no volume expansion in the dilute regime and the volume
expansion in the rdense regime is entirely due to the irrotational motion since
Bdg(t)’ng(t)’o. As irrotational motion tends to pack or compact the particles
(because the part of the centrifugal force proportional to Ajy’s has a r-3
dependance) as‘E increases, the ratio of final to initial shell thickness,Jz-(Ef-
ﬁfin)/(io-ibin) (superscript "f" denotes "final", occurring at R;=0.04), stays
below unity for aill ¢°’s. In contrast, solid body rotation tends to pull apart the
cluster (because the part ;f the centrifugal force proportional to Bjk’s has a r
dependance) as ?{ increases, and thus the largest Vf/V0 and R are obtained with the
largest Bod,. The decrease in & , with increasing ¢ can be explained by the fact
that in all cases Aog,>A°d,. For t>o, irrotational motion is transferred from gas
to the drops, however for a leaner mixture (and more dilute cluster) the same

momentum is transferred to less mass resulting in a larger increase in A4, versus
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Ry. Thus the drops will be centrifuged out with more packing than for the dense
clusters, and thus the shell will stay thinner.

Figure 3 shows the dependence of tgygap, vf/vo andJQ,upon st for initially dense
clusters of drops (n0>10% cm-3). As expected, tgyyy does rot correlate with StO;
tevap increases with RO and decreases with increasing initial velocities. Here RO
was varied between 1073cm and 5x10-3cm and numerically Aogo-Boda were varied
between 50 and 103. When St0 is constant, the smallest tevap corresponds to the
smallest RO and largest velocity. One of the most important findings of this study
is that Vf/V0 and JQ correlate very well with st0 and that there is a very small
dependence upon 40 when St0 is smail. Vf/V0 increases wita St0 because if the
initial drop velocity is larger, a larger expansion is obtained as explained above,
or if RO is larger, teyap is larger and thus there is more time for expansion.
Vf/v0 also increases with decreasing #0 because denser clusters have more momentum
resulting in a larger expansion. When st0 is small the drops follow more closely
the gas motion. In the case of dense clusters, if Bod, is small, no new gas is
entrained into the cluster and thus cooling and contraction occur, evidenced by
vf/V0c1. These results are consistent with previous findings(15) with st0=0,
showing contraction for dense clusters of drops. Now if RO is small, evaporation is
fast and no new gas penetrates the cluster before complete evaporation. During this
time cooling and contraction occur again.ia is a decreasing function of ¢° because
denser clusters have more mass and as the drops move out radially they loose solid
body rotation and acquire irrotational motion. For smaller ¢0 the same momentum is
transferred through vortex metion to more mass and thus A4, increases less, result-
ing in less packing, thus 1argerjl . In genera]i{ <l because the acquisition of
vortex motion by the drops makes the shell thinner since the outer cluster boundary
moves less than the inner cluster boundary. For small 5t0 there is sfrong coup-
ling between phases and the drops move first inward and ch n outward. It is
conjectured that at fixed 40 the minimum in Ji is obtained when the irrotational

motion is most important with respect to solid body rotation. As st0 decreases
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further [StO;O(IO'I)], a curve crossing is observed for the two values nf ¢0 u§éa
here. This is consistent with previous findings{15) that when S$t0=0 and 40
decreases, there is more cooling of the gas, and for dilute mixtures K stays
constant. For large st0 the interaction between phases is weak and the drops do not
acquire much vortex motion. Thus solid body rotation dominates resulting in shell
thickening as seen in Fig. 3.

The description given above is confirmed by plots versus RO and also versus Aogas
Bodg. At fixed StO, both vf/v0 and & are independent of RO. When RO is very small
this conciusion slightly deteriorates due to the dominance of cooling generated
contraction. When RO is fixed and Aog,-Bodo increases, greater final expansion,
larger final mass gain and fuel loss to the cluster, smaller teyap and larger Tg,
are obtained.

Figure 4 shows the dependence of tgyap and vf/vo upon‘ao. when RO is small and RO
decreases the surface to volume ratio of the cluster increases and thus there is
more interaction with the ambient. As a result Tgy stays larger and tgyap
decreases. When ﬁo is large and RO increases, the surface to volume ratio of the
cluster decreases, and thus interactions with the ambient are more difficult.
However, the initial slip velocity increases with‘ﬁO for given spin because it is a
function of r. This results in increasing convective evaporation yielding a slight
decrease in tgyap. A plausible explanation for Vf/V° increasing with decreasing'ﬁo
(except when the initial shell thickness is constant) is as follows: Smaller
clusters reside in the inner vortex part dominated by irrotational motion, whereas
larger clusters have more éass in the outer part of the vortex dominated by spin.
Since the centrifugal force is a stronger function of the irrotational motion than
of spin as ﬁb decreases, for smaller clusters there is a larger centrifugal force
if there is strong coupling between Agy and Aqy which is what happens for dense
clusters. This results in more expansion and thus larger vf/v°. When the initial
shell thickness is constant, as Eb increases spin becomes relatively more important

than in the other cases because here there is not much liquid mass in the core.
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Because larger clusters have generally more spin and thus a larger centrifugal
force, the expansion is larger and vf/v° increases.

In Fig. 5, Ris plotted versus AR‘O. As explained above, when Eb increases spin
dominates, resulting in a larger drop dispersion and thusf increases. In contrast,
when‘ﬁ0 decreases, irrotational motion dominates, resulting in more packing of the
drops and thus & decreases.

v. SUMMARY AND CONCLUSIONS

A formulation has been presented which describes the evaporation of clusters of
drops in large, coherent, vortices. The model takes into account the dynamic and
thermodynamic interactions between drops and gas and is valid for both dense and
dilute clusters of drops.

The results show the importance of both Bod, and Boga for achieving complete
evaporation in the dense cluster regime. By increasing Boda and Bogg, complete
evaporation is achieved in cases where saturation would be obtained otherwise. It
was also found that Vf/V0 and & are both decreasing functions of ¢° due to the
larger mass (and thus larger centrifugal force) as the mixture is richer, and also
due to the complex interplay between irrotational motion and solid body rotation in
affecting the fate of the drops.

Results obtained for dense clusters of drops show that tey,p does not correlate
with St0. In contrast, both Vf/V0 and ﬁ? correlate very well with $t0. This result
.is very significant for experimentalists and designing engineers and also gives a
way to qualitatively check this theory without needing a.precise measurement of n
providing n0>104cm=3. when $t0 is small the behavior is dominated by*evaporative
cooling and cluster contraction whereas when st0 is large expansion is due either
to larger initial velocities or larger evaporation time. At constant st0, tevap
increases with RC, but both Vf/Vo and J? are independent of RO,

The results show also that tgyap is a nonmonotomic, convex function of 'Eb,
although the variation when R0 is large is slight. Since when RO is small tevap i

o~
a strongly increasing function of ﬁb this means that by slightly decreasing RO one
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could achieve important reductions in -,yap. vi/v0 s a decreasing function of?ﬁjf
except when the initial shell thickness is constant, in which case it is an in-
creasing function of ﬁb.Jlis an increasing function of ﬁb characterized by drop
packing and shell-thinning for sma]]lﬁo, and drop dispersion and shell-thickening
for large values of RO,

The confirmation of all the above results awaits comparison with experimental
observations which so far are lacking, except for the dilute cluster regime and/or
non evaporating case. In the dilute regime the present model predicts qualitatively
the global observations of the experiments{1,2:3) but detailed comparisons cannot
be made due to the fact that the more realistic case of the evaporating drops was
treated here. In the present calculations an efficient computationai procedure was
developed using the drop radius as the advancing, time-like variable. This
procedure precludes comparisons with the non-evaporating drops experiments.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

FIGURE CAPTIONS

~ ~
Physical situation studied. Rjn, and R are both located in the free

vortex part of the line vortex which is located at the center of the
cluster.

Variation of the evaporation time, volume ratio, final shell thickness
and shell thickness ratio versus the initial air/fuel mass ratio. TOga
- 1000k, T0q5 = 350K, YOp,; = 0, RO = 2x10-3em, RO = 1.0cm, ROy, -
0.25cm, o, = 0.734 g/cm3 Cp = 0.241 cal/gK, Cppy = 0.4 cal/gK, Lpy =
73.92 cal/g.

Variation of the evaporation time, volume ratio, final shell thickness
and shell ratio with the initial Stokes number for initially dense
clusters of drops. T0g; = 100K, T0g; = 350K, Y0yy, = 0, R0 = 1.0 cm,
ROip = 0.25cm, AQyy = B0g, = 0, 5y = 0.734g/cm3, C, = 0.241 cal/gK.
Corv = 0.4 cal/gK, Lpp = 73.92 cal/g.

Evaporation time and volume ratio versus the initial outer radius of
the cluster. T0g, = 1000k, TO0g¢ = 350K, ¥O0r,, = 0, AOy, = 80g, = o,
Aogg (cmé/sec) = Bodo (secl) = 103, Py = 0.734g/cm3, Cp = 0.241
cal/gK, Cppy = 0.4 cal/gK, Lpp = 73.92 cal/q, RO = 2x10~3cm.

Variation of the final shell thickness and shell thickness ratio with
the initial outer radius of the ciuster. T0g, = 1000K, 054 = 350K,
YOprya = 0, A%y, = B0g, = 0, AOg, (cm?/sec) = 804, (secl) - 103, o, -
0.734g/cm3, Cp = 0.241 cal/gK, Cppy = 0.4 cal/gK, Lpy = 73.92 cal/g, RO
« 2x10-3cm.
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